
1 | P a g e T Y B S c   C S   P y t h o n   W o r k B o o k  

 
 
 

T.Y.B.Sc. 
(Computer Science) 

 

SECC - I 
CS-3510 PYTHON PROGRAMMING 

 

Semester V 

 
(From Academic Year 2021) 

 
Name Roll No.   

 

College Division    
 

 

 

Academic Year   
 

 

 
 



2 | P a g e T Y B S c   C S   P y t h o n   W o r k B o o k  

BOARD OF STUDIES 

 

1. Dr. Bedekar Smita  2. Dr. Dhole Sanjay  

3. Dr. Bharambe Manisha 4. Dr. Ponde Poonam 

5. Dr. Sardesai Anjali 6. Dr. Mulay Prashant 

7. Dr. Sayyad Razzak 8. Dr. Wani Vilas 

9. Dr. Shinde Sahebrao 10. Dr. Kolhe Satish 

11. Dr. Patil Ranjeet 12. Dr. Sonar Deepak 

13. Dr. Yadav Jyoti 14. Dr. Kumbhojkar Nilesh 

15. Dr. Dasari Abhay  

 

 
EDITOR AND PREPARED BY: 

 

PROF. AMIT KARBHARI MOGAL 

(MVP SAMAJ’S CMCS COLLEGE, NASHIK) 

 

 

PROF. ANJUM PATEL 

(VIT ACS COLLEGE, PUNE) 

 

 

PROF. DR. RAZZAK SAYYAD 

(B.P.H.E. SOCIETY'S AHMEDNAGAR COLLEGE, AHMEDNAGAR) 

 

 
 
 



3 | P a g e T Y B S c   C S   P y t h o n   W o r k B o o k  

ABOUT THE WORK BOOK 

 
• OBJECTIVES OF THIS BOOK 

 

This lab-book is intended to be used by T.Y.B.Sc(Computer Science) students for SECC - I CS-3510 

Python Programming , Semester V. 

 
The objectives of this book are 

a. Covers the complete scope of the syllabus. 

b. Bringing uniformity in the way course is conducted across different colleges. 

c. Continuous assessment of the students. 

d. Providing ready references for students while working in the practical. 

 

• How to use this book? 

This book is mandatory for the completion of the SECC - I CS-3510 Python Programming course. It is 

a measure of the performance of the student for the entire duration of the course. 

 
• Instructions to the students 

1. Students should carry this book during practical demostration sessions. 

2. Print outs of source code and outputs is optional 

3. Student should read the topics mentioned in Reading section of this book before comleting the 

practical assignments. 

4. Students should solve those exercises which are selected by subject or practical in-charge as a 

part of journal activity. However, students are free to solve additional exercises for more practice. 

5. Each assignment will be assessed on a scale of 0 to 5 as indicated below. 

i) Not done 0 

ii) Incomplete 1 

iii) Late Complete 2 

iv) Needs improvement 3 

v) Complete 4 

vi) Well Done 5 

 
• Difficulty Levels 

Self Activity: Students should solve these exercises for practice only. 

SET A - Easy: All exercises are compulsory. 

SET B - Medium: All exercises are compulsory. 

Programs for practice: all these programs are for homework. 

 
• Instruction to the Instructors 

1) Make sure that students follow the instruction as given above. 

2) Instructors use programs in workbook for giving practical demonstrations along side theory. 

3) After a student completes a specific set, the instructor has to verify the programs and sign in the 

space provided after the activity. 

4) Evaluate each assignment on a scale of 5 as specified above by ticking appropriate box. 

5) The value should also be entered on assignment completion page of the respective Lab course. 

6) Students should be encouraged to use any IDE like Jupiter, spyder, pycharm etc.... for their 

assignments. 

7) College has freedom to choose the any operating system environment for practical 

demonstrations of python programs. 



4 | P a g e T Y B S c   C S   P y t h o n   W o r k B o o k  

 

 

 

 
 

 

 

 

 

Assignment Completion Sheet 
 

Sr. No. Assignment Name Marks 

1 Python Basics and IDE,Simple Python Programs  

2 Strings and Functions  

3 List, Tuples, Sets, and Dictionary  

4 File Handling and Date-Time  

5 Exception handling and Regular expression  

 Total out of 30  

 Total out of 5  

 

 

 
 

Signature of Incharge: 

 

 



 

Assignment 1: Python Basics and IDE, Simple Python Programs 

Objectives  

• To know about python IDE 

• To write, test, and debug simple Python programs. 

• To implement Python programs with conditionals and loops. 

Reading  

You should read the following topics before starting this exercise 

Introduction to Python The Python Programming Language, History, features, Applications, Installing Python, 

Running Simple Python program Basics of Python 

Standard data types - basic, none, Boolean (true & False), numbers, Variables, Constants,Python identifiers and 

reserved words, Lines and indentation, multi-line statements and Comments, Input / output with print and input 

,functions Declaration, Operations on Data such as assignment, arithmetic, relational, logical and bitwise operations, 

dry run, Simple Input and output etc 

Ready Reference and Self Activity     

The programming language you will be learning is Python. Python is a high-level, object-oriented programming 

language. Most beginners in the development field prefer Python as one of the first languages to learn because 

of its simplicity and versatility. It is also well supported by the community and keeps up with its increasing 

popularity. 

7 Reasons Why You Should Use Python 

1. Readable and Maintainable Code 

2. Multiple Programming Paradigms 

3. Compatible with Major Platforms and Systems 

4. Robust Standard Library 

5. Open Source Frameworks and Tools 

6. Simplified Software Development 

7. Test-Driven Development 

We will see how to download and install Python and use the popular IDEs to begin coding. We will also 

discuss jupyter functionality in detail. 

There are 7 top IDE’s for Python 

1. Spyder 

2. PyCharm 

3. Thonny 

4. Atom 

5. Jupyter 

6. Komodo 

7. Wingware 

 

T.Y.B.Sc(Comp.Sc.)Lab–II,Sem–I [Page5] 



6  

How to Install Jupyter Notebook on Ubuntu 20.04 / 18.04 

How to install Jupyter Notebook on Ubuntu 20.04 to share live code with others. In this guide, we’ll show you how 

to Install Jupyter Notebook on Ubuntu 20.04 LTS. Here we show you simple ways to install Jupyter on Ubuntu 20.04 

LTS (Focal Fossa). You can follow the same instructions for Ubuntu 18.04, 16.04 and any other Debian based 

distribution like Linux Mint and Elementary OS. 

Jupyter Notebook is an open-source web application that allows you to create and share live code documents 

with others. Jupyter is a next-generation notebook interface. Jupyter supports more than 40 programming languages 

including Python, R, Julia, and Scala. 

 
Install Jupyter Notebook on Ubuntu 

The following steps to install Jupyter Notebook on your Ubuntu systems. 

Step 1 Update and Upgrade Packages 

First, we always start our installations before we ensure our system is updated. Run the following command to update 

the APT list of available packages and their versions. Moreover, use the upgrade command to actually install newer 

versions of the packages. 
 

 

 

sudoapt update &&sudoapt -y upgrade 
 

 

 

Step 2 Install Python 

Next you have to install Python 3, pip, and other required packages to build Python dependencies. 

sudoaptinstall python3-pip python3-dev 

Step 3 Install Python virtualenv 

Upgrade pip version and install Python virtualenv package. 
 

 

sudo -H pip3 install --upgrade pip 

sudo -H pip3 install virtualenv 

 

Note: Here, -H stands for security policy to set the home environment variable. 

Step 4 Create Python Virtual Environment 

First you have to create a directory in your home directory (or any other location). This new directory is 

considered our code directory. 

 

mkdir notebook 
 

 
 

 

Next you have to go to the directory and create a Python virtual environment called jupyterenv. 



7  

 

 

 

cd notebook 

virtualenv jupyterenv 

 
 

Now we have to load and activate the virtual environment using the following command. 

source jupyterenv/bin/activate 

Step 5 Install Jupyter Notebook 

Write down the following command in your terminal to install Jupyter using pip. 

pip install jupyter 

Step 6 Run Jupyter Notebook 

We have installed all required packages and dependencies. Let’s start to run the Jupyter Notebook. Run the 

following command. 
 

 

 

jupyter notebook 
 

 

 

Here is a home screen of Jupyter. 
 

 

 

 

 

You have to click on the new menu and select Python3 or else you can select another option. It will create a 

new page in your browser of Jupyter. 



8  

 
 

Step 7 Create Jupyter Application Menu 

Create a new file called run-jupyter.sh in your notebook directory. 

#!/bin/bash 

source /home/username/jupyterenvironment/bin/activate 

jupyter notebook 

 

Create a new file in /usr/share/applications called jupyter.desktop to create an application menu item. 
 

 

[Desktop Entry] 

Name=Jupyter Notebook 

Exec=/home/username/notebook/run-jupyter.sh 

Type=Application 

Terminal=true 
 

 
 

 

We hope you have found this helpful. 

Jupyter Notebook can be installed in two possible ways: 

Install Jupyter notebook by Anaconda 

 
 

COLLEGE CONCERN AUTHORITY CAN DECIDE WHICH OPERATING SYSTEM 

PLATFORM AND IDE SHOULD BE USE FOR SUCCESSFUL IMPLENETATION OF 

PYTHON PROGRAMMING COURSE. 



 

What is Anaconda? 

Anaconda is a free and open-source platform for programming languages such as Python and R. This platform comes 

with the Python interpreter and various packages that are related to Artificial Intelligence. 

The main agenda behind the Anaconda Platform is to make it easy for people who are keenly interested in these 

fields. It comes with many pre-installed libraries and packages and it just needs a single installation process. 

This platform is beginner-friendly and easy to use. 

• Install Python and Jupyter using the Anaconda Distribution: Includes Python, the Jupyter Notebook, 

and other commonly used packages for scientific computing and data science. 

• Using PIP command: 

Install Jupyter using the PIP package manager used to install and manage software packages/libraries 

written in Python. 

Installing Jupyter Notebook using Anaconda 

Anaconda platform also contains Jupyter, Spyder, and more. This is mainly used for large data processing, data 

analytics, heavy scientific computing. One sub-application of anaconda is Spyder that is used for Python. OpenCV 

Library for image processing which is used in Python also works in Spyder. Package versions are managed by the 

package management system called Conda. 

In order to install Jupyter using Anaconda, Please follow the following instructions: 

1. Install Anaconda: 

 
9 



10  

2. Please go to the Anaconda.com/downloads site 
 

3. Select the respective platform: Windows/Mac/Linux 

 



11  

4. Download the .exe installer 
 

 
 

5. Open and execute the .exe installer 
 



12  

6. Launch Anaconda Navigator 

 

7. Click on the Install Jupyter Notebook Button 
 



13  

8. Beginning the Installation 
 

 

9. Loading Packages 

10. Finish Installation 



14  

Installing Jupyter Notebook using pip command 

PIP stands for the package management system which is used to install and manage software packages/libraries. 

These libraries and the packages are written in Python. These files are stored in a large “on-line repository” termed 

as Python Package Index (PyPI). pip uses PyPI as the default source for packages and their dependencies. Before we 

start installing pip, we have to check the version of the pip command. If the version of the pip command is not 

updated then we need to update the pip in our system. 

Update PIP command 

python3 -m pip install --upgrade pip  

 
 

Then after updating the pip version we need to follow the upcoming process to install Jupyter. 

• Command to install Jupyter: pip3 install Jupyter 

• Begin Installation 

• Collect Files and Data 

• Download Packages 

• Run Installation 

• Finish Installation 

Now Launch the Jupyter: 

Use the command to launch Jupyter using command-line: 

jupyter notebook  
 

 

 

The first program 

Traditionally, the first program written in a new language is called Hello, World! because all it does isdisplay the 

words, Hello,World! 

In Python, it looks like this: 
 

This is an example of a print statement, which doesn’t actually print anything on paper. It displays a valueon the 

screen. In this case, the result is the words 

Hello, World! 

The quotation marks in the program mark the beginning and end of the value; they don’t appear in theresult. 

Some people judge the quality of a programming language by the simplicity of the Hello,World! program. 

By this standard, Python does about as well as is possible. 

COLLEGE CONCERN AUTHORITY CAN DECIDE WHICH OPERATING SYSTEM PLATFORM 

AND IDE SHOULD BE USE FOR SUCCESSFUL IMPLENETATION OF PYTHON PROGRAMMING 

COURSE. 

print "Hello, World!" 



15  

Comments in Python 

Commenting is an art of expressing what a program is going to do at a very high-level. These are tagged lines of 

text to annotate a piece of code. In Python, we can apply two styles of comment: single-line and multiline. 

Single-line Python comment 

You might prefer to use a single line Python comment when there is need of short, quick comments for debugging. 

Single-line comments begin with a pound (#) symbol and automatically ends with an EOL (end of the line). 

 
While putting a comment, make sure your comment is at the same indent level as the code beneath it. For example, 

you might annotate a function definition which doesn’t have any indentation. But the function could have blocks 

of code indented at multiple levels. So take care of the alignment, when you comment inside the internal code blocks. 

 

 

Multiline Python comment 

Python allows comments to span across multiple lines. Such comments are known as multiline or block comments. 

You can use this style of commenting to describe something more complicated. 

This extended form of comments applies to some or all of the code that follows. Here is an example to use the 

multiline Python comment. 

Using the hash (#) mark 

To add multiline comments, you should begin each line with the pound (#) symbol followed by a single space. 

You can divide a comment into paragraphs. Just add an empty line with a hash mark between each para. 

Note: The symbol (#) is also known as the octothorpe. The term came from a group of engineers at Bell Labs while 

working on a first of the touch-tone keypads project. 

 

 

 

# Good code is self-documenting. 

print("Learn Python Step by Step!") 

# Define a list of months 

months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul','Aug','Sep','Oct','Nov','Dec'] 

# Function to print the calender months 

def showCalender(months): 

# For loop that traverses the list and prints the name of each month 

for month in months: 

print(month) 

showCalender(months) 

# To Learn any language you must follow the below rules. 



 

16 

 

 

Docstring in Python 

Python has the documentation strings (or docstrings) feature. It gives programmers an easy way of adding quick 

notes with every Python module, function, class, and method. You can define a docstring by adding it as a string 

constant. It must be the first statement in the object’s (module, function, class, and method) definition. The docstring 

has a much wider scope than a Python comment. Hence, it should describe what the function does, not how. Also, it 

is a good practice for all functions of a program to have a docstring. 

How to define docstring in Python? 

You can define a docstring with the help of triple-quotation mark. Add one in the beginning and second at the end 

of the string. Just like multiline comments, docstring can also overlap to multiple lines. 

Note: The strings defined using triple-quotation mark are docstring in Python. However, it might appear to you as 

a regular comment. 

What is the difference between a comment and the docstring? 

The strings beginning with triple quotes are still regular strings except the fact that they could spread to multiple 

lines. It means they are executable statements. And if they are not labeled, then they will be garbage collected as 

soon as the code executes. 

The Python interpreter won’t ignore them as it does with the comments. However, if such a string is placed 

immediately after a function or class definition or on top of a module, then they turn into docstrings. You can access 

them using the following special variable. myobj.__doc__ 

 
 
 

# 1. Know the basic syntax, data types, control structures and conditional statements. 

# 2. Learn error handling and file I/O. 

# 3. Read about exception handling and regular expression. 

# 4. Write functions and use of list, tuple, set and dictionary concepts. 

def main(): 

print("Let's start to learn Python.") 

... 

def theFunction(): 

''' 

This function demonstrate the use of docstring in Python. 

''' 

print("Python docstrings are not comments.") 

print("\nJust printing the docstring value...") 

print(theFunction. doc ) 



 

a=5 

b=3 

print('Sum : ', a+b) 

print('Subtraction : ', a-b) 

print('Multiplication : ', a*b) 

print('Division (float) : ', a/b) 

print('Division (floor) : ', a//b) 

print('Modulus : ', a%b) 

print('Exponent : ', a**b) 

Output- 

Sum : 8 

Subtraction : 2 

Multiplication : 15 

Division (float) : 1.66666666667 

Division (floor) : 1 

Summary Python comment and docstring 

Comments and docstrings add values to a program. They make your programs more readable and maintainable. 

Even if you need to refactor the same code later, then it would be easier to do with comments available. 

Software spends only 10% time of its life in development and rest of 90% in maintenance. 

Hence, always put relevant and useful comments or docstrings as they lead to more collaboration and speed up the 

code refactoring activities. 

 
Operators in Python 

Arithmetic operators 

With arithmetic operators, we can do various arithmetic operations like addition, subtraction, multiplication, division, 

modulus, exponent, etc. Python provides multiple ways for arithmetic calculations like eval function, declare variable 

& calculate, or call functions. 

Operator Purpose Usage 

+ Addition – Sum of two operands a+b 

– Subtraction – Difference between the two operands a-b 

* Multiplication – Product of the two operands a*b 

/ Float Division – Quotient of the two operands a/b 

// Floor Division – Quotient of the two operands (Without fractional part) a//b 

% Modulus – Integer remainder after division of ‘a’ by ‘b.’ a%b 

** Exponent – Product of ‘a’ by itself ‘b’ times (a to the power of b) a**b 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
17 



 

18 

 

 

Comparison operators 

In Python programming, comparison operators allow us to determine whether two values are equal or if one is 

higher than the other and then make a decision based on the result. 

Operator Purpose Usage 

> Greater than – if the left operand is greater than the right, then it returns true. a>b 

< Less than – if the left operand is less than the right, then it returns true. a<b 

== Equal to – if two operands are equal, then it returns true. a==b 

!= Not equal to – if two operands are not equal, then it returns true. a!=b 

>= Greater than or equal – if the left operand is greater than or equal to the right,  

 then it returns true. a>=b 

<= Less than or equal – if the left operand is less than or equal to the right, then  

 it returns true. a<=b 
 

 

 

 

 

 

 
 

Modulus : 2 

Exponent : 125 

a=9 

b=5 

print('a > b is',a>b) 

print('a < b is',a<b) 

print('a == b is',a==b) 

print('a != b is',a!=b) 

print('a >= b is',a>=b) 

print('a <= b is',a<=b) 

Output- 

a > b is True 

a < b is False 

a == b is False 

a != b is True 

a >= b is True 

a <= b is False 



19  

Logical operators 

Logical Python operators enable us to make decisions based on multiple conditions. The operands act as conditions 

that can result in a true or false value. The outcome of such an operation is either true or false (i.e., a Boolean value). 

However, not all of these operators return a boolean result. The ‘and’ and ‘or’ operators do return one of their 

operands instead of pure boolean value. Whereas the ‘not’ operator always gives a real boolean outcome. 

Operator Purpose Usage 

and if ‘a’ is false, then ‘a’, else ‘b’ a and b 

or if ‘a’ is false, then ‘b’, else ‘a’ a or b 

not if ‘a’ is false, then True, else False not a 
 

Bitwise operators 

Bitwise Python operators process the individual bits of integer values. They treat them as sequences of binary bits. 

We can use bitwise operators to check whether a particular bit is set. For example, IoT applications read data from 

the sensors based on a specific bit is set or not. In such a situation, these operators can help. 

Operator Purpose Usage 

& Bitwise AND – compares two operands on a bit level and returns 1  

 if both the corresponding bits are 1 a & b 

| Bitwise OR – compares two operands on a bit level and returns 1  

 if any of the corresponding bits is 1 a | b 

~ Bitwise NOT – inverts all of the bits in a single operand ~a 

^ Bitwise XOR – compares two operands on a bit level and returns 1  

 if any of the corresponding bits is 1, but not both a ^ b 

>> Right shift – shifts the bits of ‘a’ to the right by ‘b’ no. of times a >> b 

<< Left shift – shifts the bits of ‘a’ to the left by ‘b’ no. of times a << b 

a=7 

b=4 

# Result: a and b is 4 

print('a and b is',a and b) 

# Result: a or b is 7 

print('a or b is',a or b) 

# Result: not a is False 

print('not a is',not a) 

Output- 

a and b is 4 

a or b is 7 

not a is False 



20  

Let’s consider the numbers 4 and 6 whose binary representations are ‘00000100’ and ‘00000110’. Now, we’ll 

perform the AND operation on these numbers. 

 

 

Assignment operators 

In Python, we can use assignment operators to set values into variables. 

The instruction a = 4 uses a primitive assignment operator that assigns the value 4 to the left operand. 

Below is the list of available compound operators in Python. For example, the statement a += 4 adds to the variable 

and then assigns the same. It will evaluate to a = a + 4. 

Operator Example Similar to 

= a=4 a=4 

+= a+=4 a=a+4 

-= a-=4 a=a-4 

*= a*=4 a=a*4 

/= a/=4 a=a/4 

%= a%=4 a=a%4 

**= a**=4 a=a**4 

&= a&=4 a=a&4 

|= a|=4 a=a|4 

^= a^=4 a=a^4 

>>= a>>=4 a=a>>4 

<<= a<<=4 a=<<4 

a=4 

b=6 

#Bitwise AND: The result of 'a & b' is 4 

print('a & b is',a & b) 

Output- 

a & b is 4 

The above result is the outcome of following AND (‘&’) operation. 

0 0 0 0 0 1 0 0 & 

0 0 0 0 0 1 1 0 

 
 

0 0 0 0 0 1 0 0 (the binary representation of the number 4) 



21  

Advanced Python operators 

Python also bundles a few operators for special purposes. These are known as advanced Python operators like the 

identity operator or the membership operator. 

 
Identity operators 

These operators enable us to compare the memory locations of two Python objects/variables. They can let us find 

if the objects share the same memory address. The variables holding equal values are not necessarily identical. 

Alternatively, we can use these operators to determine whether a value is of a specific class or type. 
 

Operator Purpose Usage 

is True – if both the operands refer to the same object, else False a is b (True if id(a) and 

  id(b) are the same) 

is not True – if the operands refer to different objects, else False a is not b (True if id(a) and 

  id(b) are different) 
 

 
Membership operators 

Membership operators enable us to test whether a value is a member of other Python objects such as strings, lists, 

or tuples. 

In C, a membership test requires iterating through a sequence and checking each value. But Python makes it very 

easy to establish membership as compared to C. 

Also, note that this operator can also test against a dictionary but only for the key, not the value. 

# Using 'is' identity operator 

a = 7 

if (type(a) is int): 

print("true") 

else: 

print("false") 

# Using 'is not' identity operator 

b = 7.5 

if (type(b) is not int): 

print("true") 

else: 

print("false") 

Output- 

true 

true 



22  

Operator Purpose Usage 

in True – if the value exists in the sequence 7 in [3, 7, 9] 

not in True – if the value doesn’t found in the sequence 7 not in [3, 5, 9] 
 

 

Conditional Statements 

There comes situations in real life when we need to make some decisions and based on these decisions, we decide 

what should we do next. Similar situations arise in programming also where we need to make some decisions and 

based      on      these      decisions      we      will      execute      the      next      block      of      code. Decision-making 

statements in programming languages decide the direction of the flow of program execution. Decision-making 

statements available in python are: 

if statement 

if statement is the most simple decision-making statement. It is used to decide whether a certain statement or block 

of statements will be executed or not i.e if a certain condition is true then a block of statement is executed otherwise 

not. 

Syntax: 

if condition: 

# Statements to execute if 

# condition is true 

Here, the condition after evaluation will be either true or false. if statement accepts boolean values – if the value 

is true then it will execute the block of statements below it otherwise not. We can use condition with bracket ‘(‘ ‘)’ 

also. 

# Using Membership operator 

str = 'Python operators' 

dict = {6:'June',12:'Dec'} 

print('P' in str) 

print('Python' in str) 

print('python' not in str) 

print(6 in dict) 

print('Dec' in dict) 

Output- 

True 

True 

True 

True 

False 



23  

As we know, python uses indentation to identify a block. So the block under an if statement will be identified as 

shown in the below example: 

if condition: 

statement1 

statement2 

# Here if the condition is true, if block 

# will consider only statement1 to be inside 

# its block.Flowchart:- 

 

 

if-else 

The if statement alone tells us that if a condition is true it will execute a block of statements and if the condition 

is false it won’t. But what if we want to do something else if the condition is false. Here comes the else statement. 

We can use the else statement with if statement to execute a block of code when the condition is false. Syntax: 

if (condition): 

# Executes this block if 

# condition is true 

# python program to illustrate If statement 

i = 10 

if (i > 15): 

print ("10 is less than 15") 

print ("I am Not in if") 

Output- 

I am Not in if 

As the condition present in the if statement is false. So, the block below the if statement is not executed. 



24  

else: 

# Executes this block if 

# condition is false 

Flow Chart:- 
 

 

 
nested-if 

A nested if is an if statement that is the target of another if statement. Nested if statements mean an if statement inside 

another if statement. Yes, Python allows us to nest if statements within if statements. i.e, we can place an if statement 

inside another if statement. 

# python program to illustrate If else statement 

i = 20; 

if (i < 15): 

print ("i is smaller than 15") 

print ("i'm in if Block") 

else: 

print ("i is greater than 15") 

print ("i'm in else Block") 

print ("i'm not in if and not in else Block") 

Output- 

i is greater than 15 

i'm in else Block 

i'm not in if and not in else Block 

The block of code following the else statement is executed as the condition present in the if statement is false after 

calling the statement which is not in block(without spaces). 



25  

Syntax: 

if (condition1): 

# Executes when condition1 is true 

if (condition2): 

# Executes when condition2 is true 

# if Block is end here 

# if Block is end here 

Flow chart:- 
 

 

# python program to illustrate nested If statement 

i = 10 

if (i == 10): 

# First if statement 

if (i < 15): 

print ("i is smaller than 15") 

# Nested - if statement 

# Will only be executed if statement above 

# it is true 

if (i < 12): 

print ("i is smaller than 12 too") 

else: 

print ("i is greater than 15") 

Output- 

i is smaller than 15 

i is smaller than 12 too 



26  

if-elif-else ladder 

Here, a user can decide among multiple options. The if statements are executed from the top down. As soon as one 

of the conditions controlling the if is true, the statement associated with that if is executed, and the rest of the ladder 

is bypassed. If none of the conditions is true, then the final else statement will be executed. Syntax:- 

if (condition): 

statement 

elif (condition): 

statement 

- 

- 

else: 

statement 

Flow Chart:- 
 

 

# Python program to illustrate if-elif-else ladder 

i = 20 

if (i == 10): 

print ("i is 10") 

elif (i == 15): 

print ("i is 15") 

elif (i == 20): 

print ("i is 20") 

else: 



27  

 
Short Hand if statement 

Whenever there is only a single statement to be executed inside the if block then shorthand if can be used. The 

statement can be put on the same line as the if statement. 

Syntax: 

if condition: statement 
 

Short Hand if-else statement 

This can be used to write the if-else statements in a single line where there is only one statement to be executed 

in both if and else block. 

Syntax: 

statement_when_True if condition else statement_when_False 
 

Python programming language provides following types of loops to handle looping requirements. Python provides 

three ways for executing the loops. While all the ways provide similar basic functionality, they differ in their 

syntax and condition checking time. 

Looping Statements 

While Loop: 

In python, while loop is used to execute a block of statements repeatedly until a given a condition is satisfied. 

And when the condition becomes false, the line immediately after the loop in program is executed. 

Syntax : 

while expression: 

statement(s) 

print ("i is not present") 

Output- 

i is 20 

# Python program to illustrate short hand if 

i = 10 

if i < 15: print("i is less than 15") 

Output- 

i is less than 15 

# Python program to illustrate short hand if-else 

i = 10 

print(True) if i < 15 else print(False) 

Output- 

True 



 

All the statements indented by the same number of character spaces after a programming construct are 

considered to be part of a single block of code. Python uses indentation as its method of grouping statements. 

 

 

Using else statement with while loops: 

As discussed above, while loop executes the block until a condition is satisfied. When the condition becomes 

false, the statement immediately after the loop is executed. The else clause is only executed when your while 

condition becomes false. If you break out of the loop, or if an exception is raised, it won’t be executed. 

If else like this: 

if condition: 

# execute these statements 

else: 

# execute these statements 

and while loop like this are similar 

while condition: 

# execute these statements 

else: 

# execute these statements 
 

# Python program to illustrate 

# while loop 

count = 0 

while (count < 2): 

count = count + 1 

print("Hello Maharashtra") 

Output- 

Hello Maharashtra 

Hello Maharashtra 

#Python program to illustrate # combining else with while 

count = 0 

while (count < 3): 

count = count + 1 

print("Hello Maharashtra") 

else: 

print("In Else Block") 

Output- 

Hello Maharashtra 

28 



29  

 
Single statement while block: Just like the if block, if the while block consists of a single statement the we can 

declare the entire loop in a single line as shown below: 
 

Note: It is suggested not to use this type of loops as it is a never ending infinite loop where the condition is 

always true and you have to forcefully terminate the compiler. 

 
 

Iterating by index of sequences: We can also use the index of elements in the sequence to iterate. The key idea 

is to first calculate the length of the list and in iterate over the sequence within the range of this length. 

See the below example: 
 

 

Using else statement with for loops: We can also combine else statement with for loop like in while loop. But as 

there is no condition in for loop based on which the execution will terminate so the else block will be executed 

immediately after for block finishes execution. 

Below example explains how to do this: 

 

Hello Maharashtra 

Hello Maharashtra 

In Else Block 

# Python program to illustrate # combining else with for 

list = ["cmcs", "for", "cmcs"] 

for index in range(len(list)): 

print list[index] 

else: 

print "Inside Else Block" 

Output- 

# Python program to illustrate # Single statement while block 

count = 0 

while (count == 0): print("Hello Maharashtra") 

# Python program to illustrate # Iterating by index 

list = ["cmcs", "for", "cmcs"] 

for index in range(len(list)): 

print list[index] 

Output- 

cmcs 

for 

cmcs 



30  

 
 

Nested Loops: Python programming language allows to use one loop inside another loop. Following 

section shows few examples to illustrate the concept. 

Syntax: 

for iterator_var in sequence: 

for iterator_var in sequence: 

statements(s) 

statements(s) 

The syntax for a nested while loop statement in Python programming language is as follows: 

 
while expression: 

while expression: 

statement(s) 

statement(s) 

A final note on loop nesting is that we can put any type of loop inside of any other type of loop. For example a 

for loop can be inside a while loop or vice versa. 

 

 

Loop Control Statements: Loop control statements change execution from its normal sequence. When 

execution leaves a scope, all automatic objects that were created in that scope are destroyed. Python supports the 

following control statements. 

cmcs 

for 

cmcs 

Inside Else Block 

# Python program to illustrate # nested for loops in Python 

from    future import print_function 

for i in range(1, 4): 

for j in range(i): 

print(i, end=' ') 

print() 

Output- 

1 

2 2 

3 3 3 



31  

Continue Statement: It returns the control to the beginning of the loop. 
 

Break Statement: It brings control out of the loop 
 

 

Pass Statement: We use pass statement to write empty loops. Pass is also used for empty control statement, 

function and classes. 

 

# An empty loop 

for letter in 'cmcsforcmcs': 

pass 

print 'Last Letter :', letter 

Output- 

Last Letter : s 

# Prints all letters except 'e' and 's' 

for letter in 'cmcsforcmcs': 

if letter == 'c' or letter == 's': 

continue 

print 'Current Letter :', letter 

var = 10 

Output- 

Current Letter : m 

Current Letter : f 

Current Letter : o 

Current Letter : r 

Current Letter : m 

for letter in 'cmcsforcmcs': 

# break the loop as soon it sees 'm' 

# or 's' 

if letter == 'm' or letter == 's': 

break 

print 'Current Letter :', letter 

Output- 

Current Letter : m 



32  

Lab Assignments  

SET A 

 

 

 

 
SET B 

1. Python Program to Calculate the Area of a Triangle 

2. Python Program to Swap Two Variables 

3. Python Program to Generate a Random Number 

 
 

1. Write a Python Program to Check if a Number is Positive, Negative or Zero 

2. Write a Python Program to Check if a Number is Odd or Even 

3. Write a Python Program to Check Prime Number 

4. Write a Python Program to Check Armstrong Number 

5. Write a Python Program to Find the Factorial of a Number 

PROGRAMS FOR PRACTICE: 

1. Python Program to Convert Kilometers to Miles 

2. Python Program to Convert Celsius To Fahrenheit 

3. Write a Python Program to Check Leap Year 

4. Write a Python Program to Print all Prime Numbers in an Interval 

5. Write a Python Program to Print the Fibonacci sequence 

6. Write a Python Program to Find Armstrong Number in an Interval 

7. Write a Python Program to Find the Sum of Natural Numbers 

 
 

Signature of the instructor Date 
 

 

Assignment Evaluation    

0:Not done 2:Late Complete 4:Complete 

1:Incomplete 3:Needs improvement 5:Well Done 



33  

Assignment 2 : Strings and Functions 

Objectives  

• Understand the syntax of strings in Python, How to get data from the user, to concatenate strings, to 

interpolate with str.format(), Understand style guide and escape characters 

• Understand the concept of function, identify formal parameters and parameter values in a code sample, 

predict the return value of a function given sample parameter values, define functions with appropriate 

names for formal parameter 

Reading  

You should read the following topics before starting this exercise 

Strings: declaration, manipulation, special operations, escape character, string formatting operator, Raw String, 

Unicode strings, Built-in String methods.. 

Definitions and Uses, Function Calls, Type Conversion Functions, Math Functions, Composition, Adding New 

Functions, Flow of Execution, Parameters and Arguments, Variables and Parameters, Stack Diagrams, Void 

Functions, Anonymous functions Importing with from, Return Values, Boolean Functions, More Recursion 

Ready Reference and Self Activity  

Python Strings 

Strings are amongst the most popular types in Python. We can create them simply by enclosing characters in quotes. 

Python treats single quotes the same as double quotes. Creating strings is as simple as assigning a value to a variable. 

 

 

Accessing Values in Strings 

Python does not support a character type; these are treated as strings of length one, thus also considered a substring. 

To access substrings, use the square brackets for slicing along with the index or indices to obtain your substring. 

 

 

Updating Strings 

var1 ='Hello World!' 

var2 ="Python Programming" 

var1 ='Hello World!' 

var2 ="Python Programming" 

print"var1[0]: ", var1[0] 

print"var2[1:5]: ", var2[1:5] 

Output- 

var1[0]: H 

var2[1:5]: ytho 



34  

You can "update" an existing string by (re)assigning a variable to another string. The new value can be related to its 

previous value or to a completely different string altogether. For example − 

 

 

String Special Operators 

Assume string variable a holds 'Hello' and variable b holds 'Python', then − 
 

 

Operator 
 

Description 

+ Concatenation - Adds values on either side of the operator 

* Repetition - Creates new strings, concatenating multiple copies of the same string 

[] Slice - Gives the character from the given index 

[ : ] Range Slice - Gives the characters from the given range 

in Membership - Returns true if a character exists in the given string 

not in Membership - Returns true if a character does not exist in the given string 

r/R Raw String - Suppresses actual meaning of Escape characters. The syntax for raw 

strings is exactly the same as for normal strings with the exception of the raw string 

operator, the letter "r," which precedes the quotation marks. The "r" can be lowercase (r) 

or uppercase (R) and must be placed immediately preceding the first quote mark. 

% Format - Performs String formatting 

 
Escape Characters 

Following table is a list of escape or non-printable characters that can be represented with backslash notation. 

An escape character gets interpreted; in a single quoted as well as double quoted strings. 

 

Backslash 

notation 

 

Hexadecimal 

character 

 

Description 

\a 0x07 Bell or alert 

\b 0x08 Backspace 

\cx 
 

Control-x 

\C-x 
 

Control-x 

var1 ='Hello World!' 

print"Updated String :- ", var1[:6]+'Python' 

Output- 

Updated String :- Hello Python 



35  

\e 0x1b Escape 

\f 0x0c Formfeed 

\M-\C-x 
 

Meta-Control-x 

\n 0x0a Newline 

\nnn 
 

Octal notation, where n is in the range 0.7 

\r 0x0d Carriage return 

\s 0x20 Space 

\t 0x09 Tab 

\v 0x0b Vertical tab 

\x 
 

Character x 

\xnn 
 

Hexadecimal notation, where n is in the range 0.9, 

a.f, or A.F 

 

Typecode are the codes that are used to define the type of value the array will hold. Some common typecodes used 

are: 

 

Typecode 
 

Value 

b Represents signed integer of size 1 byte/td> 

B Represents unsigned integer of size 1 byte 

c Represents character of size 1 byte 

i Represents signed integer of size 2 bytes 

I Represents unsigned integer of size 2 bytes 

f Represents floating point of size 4 bytes 

d Represents floating point of size 8 bytes 

 
String Formatting Operator 

One of Python's coolest features is the string format operator %. This operator is unique to strings and makes up for 

the pack of having functions from C's printf() family. Following is a simple example − 

print"My name is %s and weight is %d kg!"%('Amitabh',71) 

Output- 

My name is Amitabh and weight is 71 kg! 



36  

Here is the list of complete set of symbols which can be used along with % − 
 

 

Format Symbol 
 

Conversion 

%c character 

%s string conversion via str() prior to formatting 

%i signed decimal integer 

%d signed decimal integer 

%u unsigned decimal integer 

%o octal integer 

%x hexadecimal integer (lowercase letters) 

%X hexadecimal integer (UPPERcase letters) 

%e exponential notation (with lowercase 'e') 

%E exponential notation (with UPPERcase 'E') 

%f floating point real number 

%g the shorter of %f and %e 

%G the shorter of %f and %E 

Other supported symbols and functionality are listed in the following table − 
 

 

Symbol 
 

Functionality 

* argument specifies width or precision 

- left justification 

+ display the sign 

<sp> leave a blank space before a positive number 

# add the octal leading zero ( '0' ) or hexadecimal leading '0x' or '0X', 

depending on whether 'x' or 'X' were used. 

0 pad from left with zeros (instead of spaces) 

% '%%' leaves you with a single literal '%' 

(var) mapping variable (dictionary arguments) 

m.n. m is the minimum total width and n is the number of digits to display 

after the decimal point (if appl.) 



37  

Triple Quotes 

Python's triple quotes comes to the rescue by allowing strings to span multiple lines, including verbatim NEWLINEs, 

TABs, and any other special characters. 

The syntax for triple quotes consists of three consecutive single or double quotes. 
 

Note : how every single special character has been converted to its printed form, right down to the last NEWLINE 

at the end of the string between the "up." and closing triple quotes. Also note that NEWLINEs occur either with an 

explicit carriage return at the end of a line or its escape code (\n) − 

 
Raw strings do not treat the backslash as a special character at all. Every character you put into a raw string stays 

the way you wrote it − 

 
Now let's make use of raw string. We would put expression in r'expression' as follows − 

 

>>>print'C:\\nowhere' 

Output- 

C:\nowhere 

para_str ="""this is a long string that is made up of 

several lines and non-printable characters such as 

TAB ( \t ) and they will show up that way when displayed. 

NEWLINEs within the string, whether explicitly given like 

this within the brackets [ \n ], or just a NEWLINE within 

the variable assignment will also show up. 

""" 

print para_str 

Output- 

this is a long string that is made up of 

several lines and non-printable characters such as 

TAB ( ) and they will show up that way when displayed. 

NEWLINEs within the string, whether explicitly given like 

this within the brackets [ 

], or just a NEWLINE within 

the variable assignment will also show up. 

>>>print r'C:\\nowhere' 

Output- 

C:\\nowhere 



38  

Unicode String 

Normal strings in Python are stored internally as 8-bit ASCII, while Unicode strings are stored as 16-bit Unicode. 

This allows for a more varied set of characters, including special characters from most languages in the world. I'll 

restrict my treatment of Unicode strings to the following − 

 
As you can see, Unicode strings use the prefix u, just as raw strings use the prefix r. 

 
 

Built-in String Methods 

Python includes the following built-in methods to manipulate strings − 
 

Methods Usage 

capitalize() Capitalizes first letter of string 

center(width, fillchar) Returns a space-padded string with the original string centered to a 
total of width columns. 

count(str, beg= 0,end=len(string)) Counts how many times str occurs in string or in a substring of string 
if starting index beg and ending index end are given. 

decode(encoding='UTF-8',errors='strict') Decodes the string using the codec registered for encoding. encoding 
defaults to the default string encoding. 

encode(encoding='UTF-8',errors='strict') Returns encoded string version of string; on error, default is to raise 
a ValueError unless errors is given with 'ignore' or 'replace'. 

endswith(suffix, beg=0, end=len(string)) Determines if string or a substring of string (if starting index beg and 

ending index end are given) ends with suffix; returns true if so and 
false otherwise. 

expandtabs(tabsize=8) Expands tabs in string to multiple spaces; defaults to 8 spaces per tab 
if tabsize not provided. 

find(str, beg=0 end=len(string)) Determine if str occurs in string or in a substring of string if starting 

index beg and ending index end are given returns index if found and 
-1 otherwise. 

index(str, beg=0, end=len(string)) Same as find(), but raises an exception if str not found. 

isalnum() Returns true if string has at least 1 character and all characters are 
alphanumeric and false otherwise. 

isalpha() Returns true if string has at least 1 character and all characters are 
alphabetic and false otherwise. 

isdigit() Returns true if string contains only digits and false otherwise. 

islower() Returns true if string has at least 1 cased character and all cased 
characters are in lowercase and false otherwise. 

isnumeric() Returns true if a unicode string contains only numeric characters and 
false otherwise. 

isspace() Returns true if string contains only whitespace characters and false 
otherwise. 

istitle() Returns true if string is properly "titlecased" and false otherwise. 

isupper() Returns true if string has at least one cased character and all cased 
characters are in uppercase and false otherwise. 

join(seq) Merges (concatenates) the string representations of elements in 
sequence seq into a string, with separator string. 

print u'Hello, world!' 

Output- 

Hello, world! 



39  

len(string) Returns the length of the string 

ljust(width[, fillchar]) Returns a space-padded string with the original string left-justified to 
a total of width columns. 

lower() Converts all uppercase letters in string to lowercase. 

lstrip() Removes all leading whitespace in string. 

maketrans() Returns a translation table to be used in translate function. 

max(str) Returns the max alphabetical character from the string str. 

min(str) Returns the min alphabetical character from the string str. 

replace(old, new [, max]) Replaces all occurrences of old in string with new or at most max 
occurrences if max given. 

rfind(str, beg=0,end=len(string)) Same as find(), but search backwards in string. 

rindex( str, beg=0, end=len(string)) Same as index(), but search backwards in string. 

rjust(width,[, fillchar]) Returns a space-padded string with the original string right-justified 
to a total of width columns. 

rstrip() Removes all trailing whitespace of string. 

split(str="", num=string.count(str)) Splits string according to delimiter str (space if not provided) and 
returns list of substrings; split into at most num substrings if given. 

splitlines( num=string.count('\n')) Splits string at all (or num) NEWLINEs and returns a list of each 
line with NEWLINEs removed. 

startswith(str, beg=0,end=len(string)) Determines if string or a substring of string (if starting index beg and 

ending index end are given) starts with substring str; returns true if 
so and false otherwise. 

strip([chars]) Performs both lstrip() and rstrip() on string. 

swapcase() Inverts case for all letters in string. 

title() Returns "titlecased" version of string, that is, all words begin with 
uppercase and the rest are lowercase. 

translate(table, deletechars="") Translates string according to translation table str(256 chars), 
removing those in the del string. 

upper() Converts lowercase letters in string to uppercase. 

zfill (width) Returns original string leftpadded with zeros to a total of width 

characters; intended for numbers, zfill() retains any sign given (less 
one zero). 

isdecimal() Returns true if a unicode string contains only decimal characters and 
false otherwise. 

 

Functions in Python 

A function is a block of organized, reusable code that is used to perform a single, related action. Functions provide 

better modularity for your application and a high degree of code reusing. 

As you already know, Python gives you many built-in functions like print(), etc. but you can also create your own 

functions. These functions are called user-defined functions. 

 
Defining a Function 

You can define functions to provide the required functionality. Here are simple rules to define a function in Python. 

• Function blocks begin with the keyword def followed by the function name and parentheses ( ( ) ). 

• Any input parameters or arguments should be placed within these parentheses. You can also define parameters 

inside these parentheses. 



40  

• The first statement of a function can be an optional statement - the documentation string of the function 

or docstring. 

• The code block within every function starts with a colon (:) and is indented. 

• The statement return [expression] exits a function, optionally passing back an expression to the caller. A return 

statement with no arguments is the same as return None. 

Syntax 

def functionname( parameters ): 

"function_docstring" 

function_suite 

return [expression] 

By default, parameters have a positional behavior and you need to inform them in the same order that they were 

defined. 

The following function takes a string as input parameter and prints it on standard screen. 
 

 

Calling a Function 

Defining a function only gives it a name, specifies the parameters that are to be included in the function and structures 

the blocks of code. 

Once the basic structure of a function is finalized, you can execute it by calling it from another function or directly 

from the Python prompt. Following is the example to call printme() function − 

 
Pass by reference vs value 

# Function definition is here 

def printme( str ): 

"This prints a passed string into this function" 

print str 

return; 

# Now you can call printme function 

printme("I'm first call to user defined function!") 

printme("Again second call to the same function") 

Output- 

I'm first call to user defined function! 

Again second call to the same function 

def printme( str ): 

"This prints a passed string into this function" 

print str 

return 



 

All parameters (arguments) in the Python language are passed by reference. It means if you change what a parameter 

refers to within a function, the change also reflects back in the calling function. For example − 

 
There is one more example where argument is being passed by reference and the reference is being overwritten 

inside the called function. 
 

# Function definition is here 

def changeme( mylist ): 

"This changes a passed list into this function" 

mylist.append([1,2,3,4]); 

print"Values inside the function: ", mylist 

return 

# Now you can call changeme function 

mylist =[10,20,30]; 

changeme( mylist ); 

print"Values outside the function: ", mylist 

 
 

#Here, we are maintaining reference of the passed object and appending values in the same object. 

Output- 

Values inside the function: [10, 20, 30, [1, 2, 3, 4]] 

Values outside the function: [10, 20, 30, [1, 2, 3, 4]] 

# Function definition is here 

def changeme( mylist ): 

"This changes a passed list into this function" 

mylist =[1,2,3,4];# This would assig new reference in mylist 

print"Values inside the function: ", mylist 

return 

# Now you can call changeme function 

mylist =[10,20,30]; 

changeme( mylist ); 

print"Values outside the function: ", mylist 

#The parameter mylist is local to the function changeme. 

#Changing mylist within the function does not affect mylist. 

#The function accomplishes nothing and finally this would produce the following 

Output- 

Values inside the function: [1, 2, 3, 4] 

Values outside the function: [10, 20, 30] 

41 



 

Function Arguments 

You can call a function by using the following types of formal arguments − 

1. Required arguments 

2. Keyword arguments 

3. Default arguments 

4. Variable-length arguments 

 
 

Required arguments 

Required arguments are the arguments passed to a function in correct positional order. Here, the number of 

arguments in the function call should match exactly with the function definition. 

To call the function printme(), you definitely need to pass one argument, otherwise it gives a syntax error as follows 
 

 

Keyword arguments 

Keyword arguments are related to the function calls. When you use keyword arguments in a function call, the caller 

identifies the arguments by the parameter name. 

This allows you to skip arguments or place them out of order because the Python interpreter is able to use the 

keywords provided to match the values with parameters. You can also make keyword calls to the printme() function 

in the following ways − 

 

# Function definition is here 

def printme( str ): 

"This prints a passed string into this function" 

print str 

return; 

42 

# Function definition is here 

def printme( str ): 

"This prints a passed string into this function" 

print str 

return; 

# Now you can call printme function 

printme() 

Output- 

Traceback (most recent call last): 

File "test.py", line 11, in <module> 

printme(); 

TypeError: printme() takes exactly 1 argument (0 given) 



43  

 
The following example gives more clear picture. Note that the order of parameters does not matter. 

 

 

Default arguments 

A default argument is an argument that assumes a default value if a value is not provided in the function call for that 

argument. The following example gives an idea on default arguments, it prints default age if it is not passed − 

 

# Now you can call printme function 

printme( str ="My string") 

Output- 

My string 

# Function definition is here 

def printinfo( name, age =35): 

"This prints a passed info into this function" 

print"Name: ", name 

print"Age ", age 

return; 

# Now you can call printinfo function 

printinfo( age=50, name="miki") 

printinfo( name="miki") 

Output- 

Name: miki 

Age 50 

Name: miki 

Age 35 

# Function definition is here 

def printinfo( name, age ): 

"This prints a passed info into this function" 

print"Name: ", name 

print"Age ", age 

return; 

# Now you can call printinfo function 

printinfo( age=50, name="miki") 

Output- 

Name: miki 

Age 50 



44  

Variable-length arguments 

You may need to process a function for more arguments than you specified while defining the function. These 

arguments are called variable-length arguments and are not named in the function definition, unlike required and 

default arguments. 

Syntax for a function with non-keyword variable arguments is this − 

def functionname([formal_args,] *var_args_tuple ): 

"function_docstring" 

function_suite 

return [expression] 

An asterisk (*) is placed before the variable name that holds the values of all nonkeyword variable arguments. This 

tuple remains empty if no additional arguments are specified during the function call. Following is a simple example 

 
 

 

 

The Anonymous Functions 

These functions are called anonymous because they are not declared in the standard manner by using 

the def keyword. You can use the lambda keyword to create small anonymous functions. 

# Function definition is here 

def printinfo( arg1,*vartuple ): 

"This prints a variable passed arguments" 

print"Output is: " 

print arg1 

forvarin vartuple: 

printvar 

return; 

# Now you can call printinfo function 

printinfo(10) 

printinfo(70,60,50) 

Output- 

Output is: 

10 

Output is: 

70 

60 

50 



 

• Lambda forms can take any number of arguments but return just one value in the form of an expression. They 

cannot contain commands or multiple expressions. 

• An anonymous function cannot be a direct call to print because lambda requires an expression 

• Lambda functions have their own local namespace and cannot access variables other than those in their parameter 

list and those in the global namespace. 

• Although it appears that lambda's are a one-line version of a function, they are not equivalent to inline statements 

in C or C++, whose purpose is by passing function stack allocation during invocation for performance reasons. 

Syntax 

The syntax of lambda functions contains only a single statement, which is as follows − 

lambda [arg1 [,arg2,.....argn]]:expression 

Following is the example to show how lambda form of function works – 
 

 

The return Statement 

The statement return [expression] exits a function, optionally passing back an expression to the caller. A return 

statement with no arguments is the same as return None. 

All the above examples are not returning any value. You can return a value from a function as follows − 
 

# Function definition is here 

sum =lambda arg1, arg2: arg1 + arg2; 

# Now you can call sum as a function 

print"Value of total : ", sum(10,20) 

print"Value of total : ", sum(20,20) 

Output- 

Value of total : 30 

Value of total : 40 

# Function definition is here 

def sum( arg1, arg2 ): 

# Add both the parameters and return them." 

total = arg1 + arg2 

print"Inside the function : ", total 

return total; 

# Now you can call sum function 

total = sum(10,20); 

print"Outside the function : ", total 

Output- 

Inside the function : 30 

45 



46  

 
 

Lab Assignments  

SET A 

Strings 

1) Write a python program to check whether the string is Symmetrical or Palindrome 

2) Write a python program to Reverse words in a given String 

3) Write a python program to remove i’th character from string in different ways 

Functions 

1) Write a Python function to find the Max of three numbers. 

2) Write a Python function to sum all the numbers in a list. 

3) Write a Python program to reverse a string. 

SET B 

Strings 

1. Write a python program to print even length words in a string 

2. Write a python program to accept the strings which contains all vowels 

3. Write a python program to Count the Number of matching characters in a pair of string 

Functions 

1. Write a Python function that takes a list and returns a new list with unique elements of the first list. 

2. Write a Python function that takes a number as a parameter and check the number is prime or not. 

3. Write a Python function to check whether a number is perfect or not. 

 

PROGRAMS FOR PRACTICE: 

1. Write a Python program to append items from a specified list. 

2. Write a python program Check if a Substring is Present in a Given String 

3. Write a python program Words Frequency in String Shorthands 

4. Write a python program Convert Snake case to Pascal case 

5. Write a Python function to calculate the factorial of a number (a non-negative integer). The function 

accepts the number as an argument. 

6. Write a Python function to check whether a number is in a given range. 

7. Write a Python function that accepts a string and calculate the number of upper case letters and lower 

case letters. 

8. Write a Python program to detect the number of local variables declared in a function. 

9. Write a python program to Remove all duplicates from a given string in Python 

10. Write a Python function that checks whether a passed string is palindrome or not. 

Outside the function : 30 



47  

11. Write a Python program that accepts a hyphen-separated sequence of words as input and prints the 

words in a hyphen-separated sequence after sorting them alphabetically. 

Sample Items : green-red-yellow-black-white Expected Result : black-green-red-white-yellow 

12. Write a Python function to create and print a list where the values are square of numbers between 1 

and 50 (both included). 

13. Write a Python program to execute a string containing Python code. 

14. Write a Python program to access a function inside a function. 

 
 

Signature of the instructor Date 
 

 

Assignment Evaluation    

0:Not done 2:Late Complete 4:Complete 

1:Incomplete 3:Needs improvement 5:Well Done 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assignment 3 : List, Tuples, Sets, and Dictionary 

Objectives  

• Students will be able to understand list, tuples, sets and dictionary data type and its operations 



 

# Python program to illustrate # Iterating over range 0 to n-1 

n = 3 

for i in range(0, n): 

print(i) 

Output- 

0 

1 

2 

# Python program to illustrate # Iterating over a list 

print("List Iteration") 

l = ["cmcs", "for", "cmcs"] 

for i in l: 

print(i) 

• Students will be to use list, tuples, sets and dictionary data type and its functions 

• Students will be able to apply suitable list, tuples, sets and dictionary functions to solve given programming 

problem 

Reading  

You should read the following topics before starting this exercise 

Python Lists: Concept, creating and accessing elements, updating & deleting lists, traversing a List, reverse Built-in 

List Operators, Concatenation, Repetition, In Operator, Built-in List functions and methods. 

Tuples, Accessing values in Tuples, Tuple Assignment, Tuples as return values, Variable-length argument tuples, 

and Basic tuples operations, Concatenation, Repetition, in Operator, Iteration, Built-in tuple functions, indexing, 

slicing and matrices. Creating a Dictionary, Accessing Values in a dictionary, Updating Dictionary, Deleting 

Elements from Dictionary, Properties of Dictionary keys, Operations in Dictionary, Built-In Dictionary Functions, 

Built-in Dictionary Methods. 

Sets- Definition, transaction of set(Adding, Union, intersection), working with sets 

Ready Reference and Self Activity  

Background 

for in Loop: For loops are used for sequential traversal. For example: traversing a list or string or array etc. In 

Python, there is no C style for loop, i.e., for (i=0; i<n; i++). There is “for in” loop which is similar to for 

each loop in other languages. Let us learn how to use for in loop for sequential traversals. 

Syntax: 

for iterator_var in sequence: 

statements(s) 

It can be used to iterate over a range and iterators. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

48 



 

# Iterating over a tuple (immutable) 

print("\nTuple Iteration") 

t = ("cmcs", "for", "cmcs") 

for i in t: 

print(i) 

# Iterating over a String 

print("\nString Iteration") 

s = "Cmcs" 

for i in s : 

print(i) 

# Iterating over dictionary 

print("\nDictionary Iteration") 

d = dict() 

d['xyz'] = 123 

d['abc'] = 345 

for i in d : 

print("%s %d" %(i, d[i])) 

Output- 

List Iteration 

cmcs 

for 

cmcs 

Tuple Iteration 

cmcs 

for 

cmcs 

String Iteration 

C 

m 

c 

s 

Dictionary Iteration 

xyz 123 

abc 345 
 

 

49 



 

How for loop in Python works internally? 

Before proceeding to this section, you should have a prior understanding of Python Iterators. 

Firstly, lets see how a simple for loop looks like. 

 

 

Here we can see the for loops iterates over a iterable object fruits which is a list. Lists, sets, dictionary these are 

few iterable objects while an integer object is not an iterable object. 

For loops can iterate over any iterable object (example: List, Set, Dictionary, Tuple or String). 

Now with the help of above example lets dive deep and see what happens internally here. 

1. Make the list (iterable) an iterable object with help of iter() function. 

2. Run a infinite while loop and break only if the StopIteration is raised. 

3. In the try block we fetch the next element of fruits with next() function. 

4. After fetching the element we did the operation to be performed in with the element. (i.e print(fruit)) 
 

# A simple for loop example 

fruits = ["apple", "orange", "kiwi"] 

for fruit in fruits: 

print(fruit) 

Output- 

apple 

orange 

kiwi 

fruits = ["apple", "orange", "kiwi"] 

# Creating an iterator object 

# from that iterable i.e fruits 

iter_obj = iter(fruits) 

# Infinite while loop 

while True: 

try: 

# getting the next item 

fruit = next(iter_obj) 

print(fruit) 

except StopIteration: 

# if StopIteration is raised, 

# break from loop 

Break 

Output- 

50 



51  

 
We can see that under the hood we are calling iter() and next() method. 

Python Lists 

The list is a most versatile datatype available in Python which can be written as a list of comma-separated values 

(items) between square brackets. Important thing about a list is that items in a list need not be of the same type. 

Creating a list is as simple as putting different comma-separated values between square brackets. For example − 

list1 = ['Maharashtra', 'Gujrat', 1998, 1999]; 

list2 = [1, 2, 3, 4, 5 ]; 

list3 = ["a", "b", "c", "d"] 

Similar to string indices, list indices start at 0, and lists can be sliced, concatenated and so on. 

Accessing Values in Lists 

To access values in lists, use the square brackets for slicing along with the index or indices to obtain value available 

at that index. For example − 

 
Updating Lists 

You can update single or multiple elements of lists by giving the slice on the left-hand side of the assignment 

operator, and you can add to elements in a list with the append() method. For example − 

 

apple 

orange 

kiwi 

list1 =['Maharashtra','Gujrat',1998,1999]; 

list2 =[1,2,3,4,5,6,7]; 

print"list1[0]: ", list1[0] 

print"list2[1:5]: ", list2[1:5] 

 
 

Output- 

list1[0]: Maharashtra 

list2[1:5]: [2, 3, 4, 5] 

list =['Maharashtra','Gujrat',1998,1999]; 

print"Value available at index 2 : " 

print list[2] 

list[2]=2001; 

print"New value available at index 2 : " 

print list[2] 

Output- 

Value available at index 2 : 



52  

 
Note − append() method is discussed in subsequent section. 

Delete List Elements 

To remove a list element, you can use either the del statement if you know exactly which element(s) you are deleting 

or the remove() method if you do not know. For example − 

 
Note − remove() method is discussed in subsequent section. 

Basic List Operations 

Lists respond to the + and * operators much like strings; they mean concatenation and repetition here too, except 

that the result is a new list, not a string. 

In fact, lists respond to all of the general sequence operations we used on strings in the prior chapter. 
 

 

Python Expression 
 

Results 
 

Description 

len([1, 2, 3]) 3 Length 

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation 

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition 

3 in [1, 2, 3] True Membership 

for x in [1, 2, 3]: print x, 1 2 3 Iteration 

 
Indexing, Slicing, and Matrixes 

Because lists are sequences, indexing and slicing work the same way for lists as they do for strings. 

Assuming following input − 

1998 

New value available at index 2 : 

2001 

list1 =['Maharashtra','Gujrat',1998,1999]; 

print list1 

del list1[2]; 

print"After deleting value at index 2 : " 

print list1 

Output- 

['Maharashtra', 'Gujrat', 1998, 1999] 

After deleting value at index 2 : 

['Maharashtra', 'Gujrat', 1999] 



53  

L = ['spam', 'Spam', 'SPAM!'] 
 

 

Python Expression 
 

Results 
 

Description 

L[2] SPAM! Offsets start at zero 

L[-2] Spam Negative: count from the right 

L[1:] ['Spam', 'SPAM!'] Slicing fetches sections 

 
Built-in List Functions & Methods 

Python includes the following list functions − 
 

Function Use 

cmp(list1, list2) Compares elements of both lists. 

len(list) Gives the total length of the list. 

max(list) Returns item from the list with max value. 

min(list) Returns item from the list with min value. 

list(seq) Converts a tuple into list. 

 
Python includes following list methods 

 

Methods Use 

list.append(obj) Appends object obj to list 

list.count(obj) Returns count of how many times obj occurs in list 

list.extend(seq) Appends the contents of seq to list 

list.index(obj) Returns the lowest index in list that obj appears 

list.insert(index, obj) Inserts object obj into list at offset index 

list.pop(obj=list[-1]) Removes and returns last object or obj from list 

list.remove(obj) Removes object obj from list 

list.reverse() Reverses objects of list in place 

list.sort([func]) Sorts objects of list, use compare func if given 

Python Tuples 

A tuple is a collection of objects which ordered and immutable. Tuples are sequences, just like lists. The differences 

between tuples and lists are, the tuples cannot be changed unlike lists and tuples use parentheses, whereas lists use 

square brackets. 

Creating a tuple is as simple as putting different comma-separated values. Optionally you can put these comma- 

separated values between parentheses also. For example − 



54  

tup1 = ('Maharashtra', 'Gujrat', 1998, 1999); 

tup2 = (1, 2, 3, 4, 5 ); 

tup3 = "a", "b", "c", "d"; 

The empty tuple is written as two parentheses containing nothing − 

tup1 = (); 

To write a tuple containing a single value you have to include a comma, even though there is only one value − 

tup1 = (50,); 

Like string indices, tuple indices start at 0, and they can be sliced, concatenated, and so on. 

Accessing Values in Tuples 

To access values in tuple, use the square brackets for slicing along with the index or indices to obtain value available 

at that index. For example − 

 

 

Updating Tuples 

Tuples are immutable which means you cannot update or change the values of tuple elements. You are able to take 

portions of existing tuples to create new tuples as the following example demonstrates − 

 

 

Delete Tuple Elements 

Removing individual tuple elements is not possible. There is, of course, nothing wrong with putting together another 

tuple with the undesired elements discarded. 

tup1 =('Maharashtra','Gujrat',1998,1999); 

tup2 =(1,2,3,4,5,6,7); 

print"tup1[0]: ", tup1[0]; 

print"tup2[1:5]: ", tup2[1:5]; 

Output- 

tup1[0]: Maharashtra 

tup2[1:5]: [2, 3, 4, 5] 

tup1 =(12,34.56); 

tup2 =('abc','xyz'); 

# Following action is not valid for tuples 

# tup1[0] = 100; 

# So let's create a new tuple as follows 

tup3 = tup1 + tup2; 

print tup3; 

Output- 

(12, 34.56, 'abc', 'xyz') 



55  

To explicitly remove an entire tuple, just use the del statement. For example − 
 

 

Basic Tuples Operations 

Tuples respond to the + and * operators much like strings; they mean concatenation and repetition here too, except 

that the result is a new tuple, not a string. 

In fact, tuples respond to all of the general sequence operations we used on strings in the prior chapter − 
 

 

Python Expression 
 

Results 
 

Description 

len((1, 2, 3)) 3 Length 

(1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6) Concatenation 

('Hi!',) * 4 ('Hi!', 'Hi!', 'Hi!', 'Hi!') Repetition 

3 in (1, 2, 3) True Membership 

for x in (1, 2, 3): print x, 1 2 3 Iteration 

 
Indexing, Slicing, and Matrixes 

Because tuples are sequences, indexing and slicing work the same way for tuples as they do for strings. Assuming 

following input − 

 

L =('spam','Spam','SPAM!') 

tup =('Maharashtra','Gujrat',1998,1999); 

print tup; 

del tup; 

print"After deleting tup : "; 

print tup; 

Output- 

('Maharashtra', 'Gujrat', 1998, 1999) 

After deleting tup : 

Traceback (most recent call last): 

File "test.py", line 9, in <module> 

print tup; 

NameError: name 'tup' is not defined 

#Note an exception raised, this is because after del tup tuple does not exist anymore − 



56  

 

 

Python Expression 
 

Results 
 

Description 

L[2] 'SPAM!' Offsets start at zero 

L[-2] 'Spam' Negative: count from the right 

L[1:] ['Spam', 'SPAM!'] Slicing fetches sections 

 

No Enclosing Delimiters 

Any set of multiple objects, comma-separated, written without identifying symbols, i.e., brackets for lists, 

parentheses for tuples, etc., default to tuples, as indicated in these short examples − 

 

 

Built-in Tuple Functions 

Python includes the following tuple functions − 
 

Function Use 

cmp(tuple1, tuple2) Compares elements of both tuples. 

len(tuple) Gives the total length of the tuple. 

max(tuple) Returns item from the tuple with max value. 

min(tuple) Returns item from the tuple with min value. 

tuple(seq) Converts a list into tuple. 

 
Pyhton Dictionary 

Each key is separated from its value by a colon (:), the items are separated by commas, and the whole thing is 

enclosed in curly braces. An empty dictionary without any items is written with just two curly braces, like this: {}. 

Keys are unique within a dictionary while values may not be. The values of a dictionary can be of any type, but the 

keys must be of an immutable data type such as strings, numbers, or tuples. 

Accessing Values in Dictionary 

To access dictionary elements, you can use the familiar square brackets along with the key to obtain its value. 

Following is a simple example − 

print'abc',-4.24e93,18+6.6j,'xyz'; 

x, y =1,2; 

print"Value of x , y : ", x,y; 

Output- 

abc -4.24e+93 (18+6.6j) xyz 

Value of x , y : 1 2 



57  

 
 

If we attempt to access a data item with a key, which is not part of the dictionary, we get an error as follows − 
 

 

Updating Dictionary 

You can update a dictionary by adding a new entry or a key-value pair, modifying an existing entry, or deleting an 

existing entry as shown below in the simple example − 

 

 

Delete Dictionary Elements 

You can either remove individual dictionary elements or clear the entire contents of a dictionary. You can also 

delete entire dictionary in a single operation. 

To explicitly remove an entire dictionary, just use the del statement. Following is a simple example − 
 

dict ={'Name':'Amitabh','Age':7,'Class':'First'} 

print"dict['Name']: ", dict['Name'] 

print"dict['Age']: ", dict['Age'] 

Output- 

dict['Name']: Amitabh 

dict['Age']: 7 

dict ={'Name':'Amitabh','Age':7,'Class':'First'} 

dict['Age']=8;# update existing entry 

dict['School']="CMCS School";# Add new entry 

print"dict['Age']: ", dict['Age'] 

print"dict['School']: ", dict['School'] 

Output- 

dict['Age']: 8 

dict['School']: CMCS School 

dict ={'Name':'Amitabh','Age':7,'Class':'First'} 

print"dict['Arjun']: ", dict['Arjun'] 

Output- 

dict['Arjun']: 

Traceback (most recent call last): 

File "test.py", line 4, in <module> 

print "dict['Arjun']: ", dict['Arjun']; 

KeyError: 'Arjun' 

dict ={'Name':'Amitabh','Age':7,'Class':'First'} 



58  

 
Note − del() method is discussed in subsequent section. 

 
 

Properties of Dictionary Keys 

Dictionary values have no restrictions. They can be any arbitrary Python object, either standard objects or user- 

defined objects. However, same is not true for the keys. 

There are two important points to remember about dictionary keys − 

(a) More than one entry per key not allowed. Which means no duplicate key is allowed. When duplicate keys 

encountered during assignment, the last assignment wins. For example − 

 
(b) Keys must be immutable. Which means you can use strings, numbers or tuples as dictionary keys but something 

like ['key'] is not allowed. Following is a simple example − 
 

del dict['Name'];# remove entry with key 'Name' 

dict.clear();# remove all entries in dict 

del dict ;# delete entire dictionary 

print"dict['Age']: ", dict['Age'] 

print"dict['School']: ", dict['School'] 

#Note that an exception is raised because after del dict dictionary does not exist any more − 

Output- 

dict['Age']: 

Traceback (most recent call last): 

File "test.py", line 8, in <module> 

print "dict['Age']: ", dict['Age']; 

TypeError: 'type' object is unsubscriptable 

dict ={'Name':'Amitabh','Age':7,'Name':'Manni'} 

print"dict['Name']: ", dict['Name'] 

Output- 

dict['Name']: Manni 

dict ={['Name']:'Amitabh','Age':7} 

print"dict['Name']: ", dict['Name'] 

Output- 

Traceback (most recent call last): 

File "test.py", line 3, in <module> 

dict = {['Name']: 'Amitabh', 'Age': 7}; 

TypeError: unhashable type: 'list' 



59  

Built-in Dictionary Functions & Methods 

Python includes the following dictionary functions − 
 

Function Use 

cmp(dict1, dict2) Compares elements of both dict. 

len(dict) Gives the total length of the dictionary. This would be equal to the number of items in the 

dictionary. 

str(dict) Produces a printable string representation of a dictionary 

type(variable) Returns the type of the passed variable. If passed variable is dictionary, then it would 

return a dictionary type. 

 
Python includes following dictionary methods − 

 

Methods Use 

dict.clear() Removes all elements of dictionary dict 

dict.copy() Returns a shallow copy of dictionary dict 

dict.fromkeys() Create a new dictionary with keys from seq and values set to value. 

dict.get(key, default=None) For key key, returns value or default if key not in dictionary 

dict.has_key(key) Returns true if key in dictionary dict, false otherwise 

dict.items() Returns a list of dict's (key, value) tuple pairs 

dict.keys() Returns list of dictionary dict's keys 

dict.setdefault(key, 

default=None) 

Similar to get(), but will set dict[key]=default if key is not already in dict 

dict.update(dict2) Adds dictionary dict2's key-values pairs to dict 

dict.values() Returns list of dictionary dict's values 

 

 

 

 
Python Set 

Python’s built-in set type has the following characteristics: 

• Sets are unordered. 

• Set elements are unique. Duplicate elements are not allowed. 

• A set itself may be modified, but the elements contained in the set must be of an immutable type. 

Let’s see what all that means, and how you can work with sets in Python. 

A set can be created in two ways. First, you can define a set with the built-in set() function: 

x=set(<iter>)  



60  

In this case, the argument <iter> is an iterable—again, for the moment, think list or tuple—that generates the list of 

objects to be included in the set. This is analogous to the <iter> argument given to the .extend() list method: 

 
Strings are also iterable, so a string can be passed to set() as well. You have already seen that list(s) generates a list 

of the characters in the string s. Similarly, set(s) generates a set of the characters in s: 
 

You can see that the resulting sets are unordered: the original order, as specified in the definition, is not necessarily 

preserved. Additionally, duplicate values are only represented in the set once, as with the string 'zoo' in the first 

two examples and the letter 'u' in the third. 

Alternately, a set can be defined with curly braces ({}): 

x={<obj>,<obj>,...,<obj>}  

When a set is defined this way, each <obj> becomes a distinct element of the set, even if it is an iterable. This 

behavior is similar to that of the .append() list method. 

Thus, the sets shown above can also be defined like this: 
 

To recap: 

• The argument to set() is an iterable. It generates a list of elements to be placed into the set. 

• The objects in curly braces are placed into the set intact, even if they are iterable. 

Observe the difference between these two set definitions: 

>>>x=set(['zoo','cat','jaz','zoo','box']) 

>>>x 

{'box', 'zoo', 'cat', 'jaz'} 

 
 

>>>x=set(('zoo','cat','jaz','zoo','box')) 

>>>x 

{'box', 'zoo', 'cat', 'jaz'} 

>>>s='quux' 

>>>list(s) 

['q', 'u', 'u', 'x'] 

>>>set(s) 

{'x', 'u', 'q'} 

>>>x={'zoo','cat','jaz','zoo','box'} 

>>>x 

{'box', 'zoo', 'cat', 'jaz'} 

>>>x={'b','o','o','x'} 

>>>x 

{'x', 'b', 'o'} 



61  

 
A set can be empty. However, recall that Python interprets empty curly braces ({}) as an empty dictionary, so the 

only way to define an empty set is with the set() function: 
 

An empty set is falsy in a Boolean context: 
 

You might think the most intuitive sets would contain similar objects—for example, even numbers or surnames: 
 

Python does not require this, though. The elements in a set can be objects of different types: 
 

Don’t forget that set elements must be immutable. For example, a tuple may be included in a set: 
 

>>>{'zoo'} 

{'zoo'} 

>>>set('zoo') 

{'o', 'z'} 

>>>x=set() 

>>>type(x) 

<class 'set'> 

>>>x 

set() 

>>>x={} 

>>>type(x) 

<class 'dict'> 

>>>x=set() 

>>>bool(x) 

False 

>>>xor1 

1 

>>>xand1 

set() 

>>>s1={2,4,6,8,10} 

>>>s2={'Smith','McArthur','Wilson','Johansson'} 

>>>x={42,'zoo',3.14159,None} 

>>>x 

{None, 'zoo', 42, 3.14159} 

>>>x={42,'zoo',(1,2,3),3.14159} 

>>>x 

{42, 'zoo', 3.14159, (1, 2, 3)} 



62  

But lists and dictionaries are mutable, so they can’t be set elements: 
 

 

Set Size and Membership 

The len() function returns the number of elements in a set, and the in and not in operators can be used to test for 

membership: 

 
 

 

 

 
 

Operating on a Set 

Many of the operations that can be used for Python’s other composite data types don’t make sense for sets. For 

example, sets can’t be indexed or sliced. However, Python provides a whole host of operations on set objects that 

generally mimic the operations that are defined for mathematical sets. 

Operators vs. Methods 

Most, though not quite all, set operations in Python can be performed in two different ways: by operator or by method. 

Let’s take a look at how these operators and methods work, using set union as an example. 

Given two sets, x1 and x2, the union of x1 and x2 is a set consisting of all elements in either set. 

>>>x={'zoo','cat','jaz'} 

>>>len(x) 

3 

>>>'cat' in x 

True 

>>>'box' in x 

False 

>>>a=[1,2,3] 

>>>{a} 

Traceback (most recent call last): 

File "<pyshell#70>", line 1, in <module> 

{a} 

TypeError: unhashable type: 'list' 

>>>d={'a':1,'b':2} 

>>>{d} 

Traceback (most recent call last): 

File "<pyshell#72>", line 1, in <module> 

{d} 

TypeError: unhashable type: 'dict' 



63  

Consider these two sets: 
 

The union of x1 and x2 is {'zoo', 'cat', 'jaz', 'box', 'quux'}. 

Note: Notice that the element 'jaz', which appears in both x1 and x2, appears only once in the union. Sets never 

contain duplicate values. 

 
In Python, set union can be performed with the | operator: 

 

Set union can also be obtained with the .union() method. The method is invoked on one of the sets, and the other is 

passed as an argument: 
 

The way they are used in the examples above, the operator and method behave identically. But there is a subtle 

difference between them. When you use the | operator, both operands must be sets. The .union() method, on the other 

hand, will take any iterable as an argument, convert it to a set, and then perform the union. 

 
Observe the difference between these two statements: 

 

Both attempt to compute the union of x1 and the tuple ('jaz', 'box', 'quux'). This fails with the | operator but 

succeeds with the .union() method. 

Available Operators and Methods 

Below is a list of the set operations available in Python. Some are performed by operator, some by method, and 

some by both. The principle outlined above generally applies: where a set is expected, methods will typically 

accept any iterable as an argument, but operators require actual sets as operands. 

x1={'zoo','cat','jaz'} 

x2={'jaz','box','quux'} 

>>>x1={'zoo','cat','jaz'} 

>>>x2={'jaz','box','quux'} 

>>>x1|x2 

{'jaz', 'quux', 'box', 'cat', 'zoo'} 

>>>x1.union(x2) 

{'jaz', 'quux', 'box', 'cat', 'zoo'} 

>>>x1|('jaz','box','quux') 

Traceback (most recent call last): 

File "<pyshell#43>", line 1, in <module> 

x1|('jaz','box','quux') 

TypeError: unsupported operand type(s) for |: 'set' and 'tuple' 

>>>x1.union(('jaz','box','quux')) 

{'jaz', 'quux', 'box', 'cat', 'zoo'} 



64  

Compute the union of two or more sets. 

x1.union(x2[, x3 ...]) 

x1 | x2 [| x3 ...] 

 

Set Union 

 

 

 
x1.union(x2) and x1 | x2 both return the set of all elements in either x1 or x2: 

 

>>> 

>>>x1={'zoo','cat','jaz'} 

>>>x2={'jaz','box','quux'} 

 
 

>>>x1.union(x2) 

{'zoo', 'box', 'quux', 'jaz', 'cat'} 

 
 

>>>x1|x2 

{'zoo', 'box', 'quux', 'jaz', 'cat'} 

More than two sets may be specified with either the operator or the method: 

>>>a={1,2,3,4} 

>>>b={2,3,4,5} 

>>>c={3,4,5,6} 

>>>d={4,5,6,7} 

>>>a.union(b,c,d) 

{1, 2, 3, 4, 5, 6, 7} 

>>>a|b|c|d 



65  

 
The resulting set contains all elements that are present in any of the specified sets. 

Compute the intersection of two or more sets. 

x1.intersection(x2[, x3 ...]) 

x1 & x2 [& x3 ...] 

 

Set Intersection 

x1.intersection(x2) and x1 & x2 return the set of elements common to both x1 and x2: 
 

You can specify multiple sets with the intersection method and operator, just like you can with set union: 

 
The resulting set contains only elements that are present in all of the specified sets. 

Compute the difference between two or more sets. 

x1.difference(x2[, x3 ...]) 

x1 - x2 [- x3 ...] 

{1, 2, 3, 4, 5, 6, 7} 

>>>a={1,2,3,4} 

>>>b={2,3,4,5} 

>>>c={3,4,5,6} 

>>>d={4,5,6,7} 

>>>a.intersection(b,c,d) 

{4} 

>>>a&b&c&d 

{4} 

>>>x1={'zoo','cat','jaz'} 

>>>x2={'jaz','box','quux'} 

>>>x1.intersection(x2) 

{'jaz'} 

>>>x1&x2 

{'jaz'} 



66  

 

Set Difference 

x1.difference(x2) and x1 - x2 return the set of all elements that are in x1 but not in x2: 
 

Another way to think of this is that x1.difference(x2) and x1 - x2 return the set that results when any elements 

in x2 are removed or subtracted from x1. 

Once again, you can specify more than two sets: 
 

 

When multiple sets are specified, the operation is performed from left to right. In the example above, a - b is 

computed first, resulting in {1, 2, 3, 300}. Then c is subtracted from that set, leaving {1, 2, 3}: 

>>> 

>>>x1={'zoo','cat','jaz'} 

>>>x2={'jaz','box','quux'} 

>>>x1.difference(x2) 

{'zoo', 'cat'} 

>>>x1-x2 

{'zoo', 'cat'} 

>>>a={1,2,3,30,300} 

>>>b={10,20,30,40} 

>>>c={100,200,300,400} 

>>>a.difference(b,c) 

{1, 2, 3} 

>>>a-b-c 

{1, 2, 3} 



67  

 
 

Compute the symmetric difference between sets. 

x1.symmetric_difference(x2) 

x1 ^ x2 [^ x3 ...] 

 

Set Symmetric Difference 

x1.symmetric_difference(x2) and x1 ^ x2 return the set of all elements in either x1 or x2, but not both: 
 

>>> 

>>>x1={'zoo','cat','jaz'} 

>>>x2={'jaz','box','quux'} 

>>>x1.symmetric_difference(x2) 

{'zoo', 'box', 'quux', 'cat'} 

>>>x1^x2 

{'zoo', 'box', 'quux', 'cat'} 

The ^ operator also allows more than two sets: 

>>> 

>>>a={1,2,3,4,5} 

>>>b={10,2,3,4,50} 

>>>c={1,50,100} 

>>>a^b^c 

{100, 5, 10} 



68  

 
Determines whether or not two sets have any elements in common. 

x1.isdisjoint(x2) returns True if x1 and x2 have no elements in common: 
 

Note: There is no operator that corresponds to the .isdisjoint() method. 

 
 

Determine whether one set is a subset of the other. 

x1.issubset(x2) 

x1 <= x2 

As with the difference operator, when multiple sets are specified, the operation is performed from left to right. 

Curiously, although the ^ operator allows multiple sets, the .symmetric_difference() method doesn’t: 

>>> 

>>>a={1,2,3,4,5} 

>>>b={10,2,3,4,50} 

>>>c={1,50,100} 

>>>a.symmetric_difference(b,c) 

Traceback (most recent call last): 

File "<pyshell#11>", line 1, in <module> 

a.symmetric_difference(b,c) 

TypeError: symmetric_difference() takes exactly one argument (2 given) 

x1.isdisjoint(x2) 

>>>x1={'zoo','cat','jaz'} 

>>>x2={'jaz','box','quux'} 

 
 

>>>x1.isdisjoint(x2) 

False 

>>>x2-{'jaz'} 

{'quux', 'box'} 

>>>x1.isdisjoint(x2-{'jaz'}) 

True 

If x1.isdisjoint(x2) is True, then x1 & x2 is the empty set: 

>>>x1={1,3,5} 

>>>x2={2,4,6} 

>>>x1.isdisjoint(x2) 

True 

>>>x1&x2 

set() 



69  

In set theory, a set x1 is considered a subset of another set x2 if every element of x1 is in x2. 

x1.issubset(x2) and x1 <= x2 return True if x1 is a subset of x2: 

 
Determines whether one set is a proper subset of the other. 

A proper subset is the same as a subset, except that the sets can’t be identical. A set x1 is considered a proper 

subset of another set x2 if every element of x1 is in x2, and x1 and x2 are not equal. 

x1 < x2 returns True if x1 is a proper subset of x2: 
 

Note: The < operator is the only way to test whether a set is a proper subset. There is no corresponding method. 

>>>x1={'zoo','cat','jaz'} 

>>>x1.issubset({'zoo','cat','jaz','box','quux'}) 

True 

>>>x2={'jaz','box','quux'} 

>>>x1<=x2 

False 

A set is considered to be a subset of itself: 

>>>x={1,2,3,4,5} 

>>>x.issubset(x) 

True 

>>>x<=x 

True 

It seems strange, perhaps. But it fits the definition—every element of x is in x. 

x1 < x2 

>>>x1={'zoo','cat'} 

>>>x2={'zoo','cat','jaz'} 

>>>x1<x2 

True 

>>>x1={'zoo','cat','jaz'} 

>>>x2={'zoo','cat','jaz'} 

>>>x1<x2 

False 

While a set is considered a subset of itself, it is not a proper subset of itself: 

>>>x={1,2,3,4,5} 

>>>x<=x 

True 

>>>x<x 

False 



 

Determine whether one set is a superset of the other. 

x1.issuperset(x2) 

x1 >= x2 

A superset is the reverse of a subset. A set x1 is considered a superset of another set x2 if x1 contains every 

element of x2. 

x1.issuperset(x2) and x1 >= x2 return True if x1 is a superset of x2: 
 

Determines whether one set is a proper superset of the other. 

A proper superset is the same as a superset, except that the sets can’t be identical. A set x1 is considered a proper 

superset of another set x2 if x1 contains every element of x2, and x1 and x2 are not equal. 

x1 > x2 returns True if x1 is a proper superset of x2: 
 

>>>x1={'zoo','cat','jaz'} 

>>>x1.issuperset({'zoo','cat'}) 

True 

>>>x2={'jaz','box','quux'} 

>>>x1>=x2 

False 

You have already seen that a set is considered a subset of itself. A set is also considered a superset of itself: 

>>>x={1,2,3,4,5} 

>>>x.issuperset(x) 

True 

>>>x>=x 

True 

x1 > x2 

>>>x1={'zoo','cat','jaz'} 

>>>x2={'zoo','cat'} 

>>>x1>x2 

True 

>>>x1={'zoo','cat','jaz'} 

>>>x2={'zoo','cat','jaz'} 

>>>x1>x2 

False 

A set is not a proper superset of itself: 

>>>x={1,2,3,4,5} 

>>>x>x 

False 

70 



71  

Note: The > operator is the only way to test whether a set is a proper superset. There is no corresponding method. 

 
 

Modifying a Set 

Although the elements contained in a set must be of immutable type, sets themselves can be modified. Like the 

operations above, there are a mix of operators and methods that can be used to change the contents of a set. 

Augmented Assignment Operators and Methods 

Each of the union, intersection, difference, and symmetric difference operators listed above has an augmented 

assignment form that can be used to modify a set. For each, there is a corresponding method as well. 

 
Modify a set by union. x1.update(x2[, x3 ...]) 

x1 |= x2 [| x3 ...] 

x1.update(x2) and x1 |= x2 add to x1 any elements in x2 that x1 does not already have: 
 

 

Modify a set by intersection. x1.intersection_update(x2[, x3 ...]) 

x1 &= x2 [& x3 ...] 

x1.intersection_update(x2) and x1 &= x2 update x1, retaining only elements found in both x1 and x2: 
 

 

Modify a set by difference.  x1.difference_update(x2[, x3 ...]) 

>>> 

>>>x1={'zoo','cat','jaz'} 

>>>x2={'zoo','jaz','box'} 

>>>x1|=x2 

>>>x1 

{'box', 'zoo', 'cat', 'jaz'} 

>>>x1.update(['corge','garply']) 

>>>x1 

{'box', 'corge', 'garply', 'zoo', 'cat', 'jaz'} 

>>>x1={'zoo','cat','jaz'} 

>>>x2={'zoo','jaz','box'} 

>>>x1&=x2 

>>>x1 

{'zoo', 'jaz'} 

>>>x1.intersection_update(['jaz','box']) 

>>>x1 

{'jaz'} 



72  

x1 -= x2 [| x3 ...] 

x1.difference_update(x2) and x1 -= x2 update x1, removing elements found in x2: 
 

 

Modify a set by symmetric difference. x1.symmetric_difference_update(x2) 

x1 ^= x2 

x1.symmetric_difference_update(x2) and x1 ^= x2 update x1, retaining elements found in either x1 or x2, but not 

both: 

 

 

Other Methods For Modifying Sets 

Aside from the augmented operators above, Python supports several additional methods that modify sets. 

Adds an element to a set. x.add(<elem>) 

x.add(<elem>) adds <elem>, which must be a single immutable object, to x: 
 

Removes an element from a set. x.remove(<elem>) 

x.remove(<elem>) removes <elem> from x. Python raises an exception if <elem> is not in x: 

>>>x1={'zoo','cat','jaz'} 

>>>x2={'zoo','jaz','box'} 

>>>x1^=x2 

>>>x1 

{'cat', 'box'} 

>>>x1.symmetric_difference_update(['box','corge']) 

>>>x1 

{'cat', 'corge'} 

>>>x1={'zoo','cat','jaz'} 

>>>x2={'zoo','jaz','box'} 

>>>x1-=x2 

>>>x1 

{'cat'} 

>>>x1.difference_update(['zoo','cat','box']) 

>>>x1 

set() 

>>>x={'zoo','cat','jaz'} 

>>>x.add('box') 

>>>x 

{'cat', 'jaz', 'zoo', 'box'} 



73  

 

 

Removes an element from a set. x.discard(<elem>) 

x.discard(<elem>) also removes <elem> from x. However, if <elem> is not in x, this method quietly does nothing 

instead of raising an exception: 

 

 

Removes a random element from a set. x.pop() 

x.pop() removes and returns an arbitrarily chosen element from x. If x is empty, x.pop() raises an exception: 
 

>>>x={'zoo','cat','jaz'} 

>>>x.remove('jaz') 

>>>x 

{'cat', 'zoo'} 

>>>x.remove('box') 

Traceback (most recent call last): 

File "<pyshell#58>", line 1, in <module> 

x.remove('box') 

KeyError: 'box' 

>>>x={'zoo','cat','jaz'} 

>>>x.discard('jaz') 

>>>x 

{'cat', 'zoo'} 

>>>x.discard('box') 

>>>x 

{'cat', 'zoo'} 

>>>x={'zoo','cat','jaz'} 

>>>x.pop() 

'cat' 

>>>x 

{'jaz', 'zoo'} 

>>>x.pop() 

'jaz' 

>>>x 

{'zoo'} 

>>>x.pop() 

'zoo' 



74  

 
 

Clears a set. x.clear() 

x. clear() removes all elements from x: 
 

 

Frozen Sets 

Python provides another built-in type called a frozenset, which is in all respects exactly like a set, except that a 

frozenset is immutable. You can perform non-modifying operations on a frozenset: 

 

>>>x 

set() 

>>>x.pop() 

Traceback (most recent call last): 

File "<pyshell#82>", line 1, in <module> 

x.pop() 

KeyError: 'pop from an empty set' 

>>>x=frozenset(['zoo','cat','jaz']) 

>>>x 

frozenset({'zoo', 'jaz', 'cat'}) 

>>>len(x) 

3 

>>>x&{'jaz','box','quux'} 

frozenset({'jaz'}) 

 
But methods that attempt to modify a frozenset fail: 

>>>x=frozenset(['zoo','cat','jaz']) 

>>>x.add('box') 

Traceback (most recent call last): 

File "<pyshell#127>", line 1, in <module> 

x.add('box') 

>>>x={'zoo','cat','jaz'} 

>>>x 

{'zoo', 'cat', 'jaz'} 

>>>x.clear() 

>>>x 

set() 



75  

 
Deep Dive: Frozensets and Augmented Assignment 

Since a frozenset is immutable, you might think it can’t be the target of an augmented assignment operator. But 

observe: 

 
Python does not perform augmented assignments on frozensets in place. The statement x &= s is effectively 

equivalent to x = x & s. It isn’t modifying the original x. It is reassigning x to a new object, and the 

object x originally referenced is gone. 

You can verify this with the id() function: 
 

AttributeError: 'frozenset' object has no attribute 'add' 

 
 

>>>x.pop() 

Traceback (most recent call last): 

File "<pyshell#129>", line 1, in <module> 

x.pop() 

AttributeError: 'frozenset' object has no attribute 'pop' 

 
 

>>>x.clear() 

Traceback (most recent call last): 

File "<pyshell#131>", line 1, in <module> 

x.clear() 

AttributeError: 'frozenset' object has no attribute 'clear' 

 
 

>>>x 

frozenset({'zoo', 'cat', 'jaz'}) 

>>>f=frozenset(['zoo','cat','jaz']) 

>>>s={'jaz','box','quux'} 

 
 

>>>f&=s 

>>>f 

frozenset({'jaz'}) 

What gives? 

>>>f=frozenset(['zoo','cat','jaz']) 

>>>id(f) 

56992872 

>>>s={'jaz','box','quux'} 



76  

 
Some objects in Python are modified in place when they are the target of an augmented assignment operator. But 

frozensets aren’t. 

Frozensets are useful in situations where you want to use a set, but you need an immutable object. For example, 

you can’t define a set whose elements are also sets, because set elements must be immutable: 

 
If you really feel compelled to define a set of sets (hey, it could happen), you can do it if the elements are 

frozensets, because they are immutable: 
 

Likewise, recall from the previous tutorial on dictionaries that a dictionary key must be immutable. You can’t use 

the built-in set type as a dictionary key: 
 

 

>>>f&=s 

>>>f 

frozenset({'jaz'}) 

>>>id(f) 

56992152 

f has a different integer identifier following the augmented assignment. It has been reassigned, not modified in 

place. 

>>>x1=set(['zoo']) 

>>>x2=set(['cat']) 

>>>x3=set(['jaz']) 

>>>x={x1,x2,x3} 

Traceback (most recent call last): 

File "<pyshell#38>", line 1, in <module> 

x={x1,x2,x3} 

TypeError: unhashable type: 'set' 

>>>x1=frozenset(['zoo']) 

>>>x2=frozenset(['cat']) 

>>>x3=frozenset(['jaz']) 

>>>x={x1,x2,x3} 

>>>x 

{frozenset({'cat'}), frozenset({'jaz'}), frozenset({'zoo'})} 

>>>x={1,2,3} 

>>>y={'a','b','c'} 

>>> 

>>>d={x:'zoo',y:'cat'} 



77  

 
If you find yourself needing to use sets as dictionary keys, you can use frozensets: 

 

 

Lab Assignments  

SET A 

List 

1) Write a Python program to sum all the items in a list. 

2) Write a Python program to multiplies all the items in a list. 

3) Write a Python program to get a list, sorted in increasing order by the last element in each tuple from a 

given list of non-empty tuples. 

Tuples 

1) Write a Python program to create a tuple. 

2) Write a Python program to create a tuple with different data types. 

3) Write a Python program to check whether an element exists within a tuple. 

Sets 

1) Write a Python program to create a set. 

2) Write a Python program to iterate over sets. 

3) Write a Python program to create set difference. 

Dictionary 

1) Write a Python script to sort (ascending and descending) a dictionary by value. 

2) Write a Python script to add a key to a dictionary. 

3) Write a Python program to iterate over dictionaries using for loops. 

SET B 

List 

1. Write a Python program to remove duplicates from a list. 

2. Write a Python program to check a list is empty or not. 

Traceback (most recent call last): 

File "<pyshell#3>", line 1, in <module> 

d={x:'zoo',y:'cat'} 

TypeError: unhashable type: 'set' 

>>>x=frozenset({1,2,3}) 

>>>y=frozenset({'a','b','c'}) 

>>> 

>>>d={x:'zoo',y:'cat'} 

>>>d 

{frozenset({1, 2, 3}): 'zoo', frozenset({'c', 'a', 'b'}): 'cat'} 



78  

Tuples 

1. Write a Python program to convert a list to a tuple. 

2. Write a Python program to remove an item from a tuple. 

3. Write a Python program to slice a tuple. 

4. Write a Python program to find the length of a tuple. 

Sets 

1. Write a Python program to check if a set is a subset of another set. 

2. Write a Python program to find maximum and the minimum value in a set. 

3. Write a Python program to find the length of a set. 

Dictionary 

1. Write a Python script to generate and print a dictionary that contains a number (between 1 and n) in the form 

(x, x*x). 

2. Write a Python script to merge two Python dictionaries. 

3. Write a Python program to get a dictionary from an object's fields. 

 
 

PROGRAMS FOR PRACTICE: 

1. Write a Python program to get the largest number from a list. 

2. Write a Python program to get the smallest number from a list. 

3. Write a Python program to count the number of strings where the string length is 2 or more and the 

first and last character are same from a given list of strings. 

4. Write a Python program to add an item in a tuple. 

5. Write a Python program to convert a tuple to a string. 

6. Write a Python program to create the colon of a tuple. 

7. Write a Python program to unpack a tuple in several variables. 

8. Write a Python program to add member(s) in a set. 

9. Write a Python program to remove item(s) from set 

10. Write a Python program to create an intersection of sets. 

11. Write a Python program to create a union of sets. 

12. Write a Python script to concatenate following dictionaries to create a new one. 

13. Write a Python program to map two lists into a dictionary. 

14. Write a Python program to sort a dictionary by key. 

15. Write a Python program to get the maximum and minimum value in a dictionary. 

16. Write a Python program to clone or copy a list. 

17. Write a Python program to find the list of words that are longer than n from a given list of words. 

18. Write a Python program to unzip a list of tuples into individual lists. 



79  

19. Write a Python program to reverse a tuple. 

20. Write a Python program to convert a list of tuples into a dictionary. 

21. Write a Python program to print a tuple with string formatting. 

22. Write a Python program to create a symmetric difference. 

23. Write a Python program to check if a given value is present in a set or not. 

24. Write a Python program to check if a given set is superset of itself and superset of another given set. 

25. Write a Python program to check a given set has no elements in common with other given set. 

26. Write a Python program to remove the intersection of a 2nd set from the 1st set. 

27. Write a Python program to remove duplicates from Dictionary. 

28. Write a Python script to check whether a given key already exists in a dictionary. 

29. Write a Python program to sum all the items in a dictionary. 

30. Write a Python program to multiply all the items in a dictionary. 

31. Write a Python program to remove a key from a dictionary. 

 

 

 
Signature of the instructor Date 

 

 

Assignment Evaluation    

0:Not done 2:Late Complete 4:Complete 

1:Incomplete 3:Needs improvement 5:Well Done 

 

 

 

 

 

 
 

Assignment 4 : File Handling and Date-Time 

Objectives  

• Performing Input/output operations on files. 

• Student will learn about Python file operations. More specifically, opening a file, reading from it, 

writing into it, closing it, and various file methods 

• Student will learn to manipulate date and time in Python 



80  

Reading  

You should read the following topics before starting this exercise 

Concept file operations, Types of file modes (text or binary), File access modes for read, write and append file. 

Types Of file in Python, Binary files in Python,Text files in Python,Python file handling operations,Python Create 

and Open a File. 

Concept of date and Time in python 

Ready Reference and Self Activity  

The file handling plays an important role when the data needs to be stored permanently into the file. A file is 

a named location on disk to store related information. We can access the stored information (non-volatile) 

after the program termination. The file-handling implementation is slightly lengthy or complicated in the other 

programming language, but it is easier and shorter in Python. 

Types of File in Python 

There are two types of files in Python and each of them is explained below in detail with examples for your 

easy understanding. 

They are: 

1. Binary file 

2. Text file 

Binary files in Python 

Most of the files that we see in our computer system are called binary files. 

Example: 

Document files: .pdf, .doc, .xls etc. 

Image files: .png, .jpg, .gif, .bmp etc. 

Video files: .mp4, .3gp, .mkv, .avi etc. 

Audio files: .mp3, .wav, .mka, .aac etc. 

Database files: .mdb, .accde, .frm, .sqlite etc. 

Archive files: .zip, .rar, .iso, .7z etc. 

Executable files: .exe, .dll, .class etc. 

All binary files follow a specific format. We can open some binary files in the normal text editor but we can’t read 

the content present inside the file. That’s because all the binary files will be encoded in the binary format, which can 

be understood only by a computer or machine. 

For handling such binary files, we need a specific type of software to open it. 

For Example, You need Microsoft word software to open .doc binary files. Likewise, you need a .pdf reader software 

to open .pdf binary files and you need a photo editor software to read the image files and so on. 

Text files in Python 

Text files don’t have any specific encoding and it can be opened in normal text editor itself. 



81  

Example: 

Web standards: html, XML, CSS, JSON etc. 

Source code: c, app, js, py, java etc. 

Documents: txt, tex, RTF etc. 

Tabular data: csv, tsv etc. 

Configuration: ini, cfg, reg etc. 

 
 

Working of open( ) function 

We use open ( ) function in Python to open a file in read or write mode. As explained above, open ( ) will return a 

file object. To return a file object we use open( ) function along with two arguments, that accepts file name and the 

mode, whether to read or write. So, the syntax being: open(filename, mode). There are three kinds of mode, that 

Python provides and how files can be opened: 

“ r “, for reading. 

“ w “, for writing. 

“ a “, for appending. 

“ r+ “, for both reading and writing 

One must keep in mind that the mode argument is not mandatory. If not passed, then Python will assume it to be “r” 

by default. Let’s look at this program and try to analyze how the read mode works: 

 
The open command will open the file in the read mode and for loop will print each line present in the file. 

 
 

Working of read( ) mode 

There is more than one way to read a file in Python. If you need to extract a string that contains all characters in 

the file then we can use file.read( ). The full code would work like this: 

 
Another way to read a file is to call a certain number of characters like in the following code the interpreter will 

read the first five characters of stored data and return it as a string: 
 

# a file named "cmcs", will be opened with the reading mode. 

file = open('cmcs.txt', 'r') 

# This will print every line one by one in the file for each in file: 

print (each) 

# Python code to illustrate read( ) mode 

file = open("file.text", "r") 

print (file.read( )) 

# Python code to illustrate read() mode character wise 

file = open("file.txt", "r") 



82  

 
 

Creating a file using write( ) mode 

Let’s see how to create a file and how write mode works: 

To manipulate the file, write the following in your Python environment: 
 

 

Working of append( ) mode 

Let’s see how the append mode works: 
 

There are also various other commands in file handling that is used to handle various tasks like: 

rstrip( ): This function strips each line of a file off spaces from the right-hand side. 

lstrip( ): This function strips each line of a file off spaces from the left-hand side. 

It is designed to provide much cleaner syntax and exceptions handling when you are working with code. That explains 

why it’s good practice to use them with a statement where applicable. This is helpful because using this method any 

files opened will be closed automatically after one is done, so auto-cleanup. 

 

 

Working of close( ) mode 

In order to close a file, we must first open the file. In python, we have an in-built method called close( ) to close 

the file which is opened. 

Whenever you open a file, it is important to close it, especially, with write method. Because if we don’t call the 

close function after the write method then whatever data we have written to a file will not be saved into the file. 

print (file.read(5)) 

# Python code to illustrate with( ) 

with open("file.txt") as file: 

data = file.read( ) 

# do something with data 

# Python code to create a file 

file = open('demo.txt','w') 

file.write("This is the write command") 

file.write("It allows us to write in a particular file") 

file.close( ) 

The close ( ) command terminates all the resources in use and frees the system of this particular program. 

# Python code to illustrate append( ) mode 

file = open('demo.txt','a') 

file.write("This will add this line") 

file.close( ) 



83  

 

 

Writing and Reading Data from a Binary File 

Binary files store data in the binary format (0’s and 1’s) which is understandable by the machine. So when we 

open the binary file in our machine, it decodes the data and displays in a human-readable format. 

 
In the above example, first we are creating a binary file ‘bfile.bin’ with the read and write access and whatever 

data you want to enter into the file must be encoded before you call the write method. 

Also, we are printing the data without decoding it, so that we can observe how the data exactly looks inside the 

file when it’s encoded and we are also printing the same data by decoding it so that it can be readable by humans. 

 

my_file = open(“C:/Documents/Python/test.txt”, “r”) 

print(my_file.read()) 

my_file.close() 

 
 

my_file = open(“C:/Documents/Python/test.txt”, “w”) 

my_file.write(“Hello World”) 

my_file.close() 

#Let’s create some binary file. 

my_file = open(“C:/Documents/Python/bfile.bin”, “wb+”) 

message = “Hello Python” 

file_encode = message.encode(“ASCII”) 

my_file.write(file_encode) 

my_file.seek(0) 

bdata = my_file.read() 

print(“Binary Data:”, bdata) 

ntext = bdata.decode(“ASCII”) 

print(“Normal data:”, ntext) 

Output- 

Binary Data: b’Hello Python’ 

Normal data: Hello Python 

/* Program to count occurrences of a string within a text file*/ 

fname = input("Enter file name: ") 

word=input("Enter word to be searched:") 

k = 0 

with open(fname, 'r') as f: 

for line in f: 



84  

#use of dir() 

import datetime 

print(dir(datetime)) 

Output- 

 
 

Python datetime 

Python has a module named datetime to work with dates and times. Let's create a few simple programs related to 

date and time before we dig deeper. 

 
Here, we have imported datetime module using import datetime statement. 

One of the classes defined in the datetime module is datetime class. We then used now() method to create a datetime 

object containing the current local date and time. 

 
In this program, we have used today() method defined in the date class to get a date object containing the current 

local date. 

Inside datetime 

We can use dir() function to get a list containing all attributes of a module. 

words = line.split() 

for i in words: 

if(i==word): 

k=k+1 

print("Occurrences of the word:") 

print(k) 

#Compile this program and pass two command line arguments: filename and string to search. 

#Get Current Date and Time 

import datetime 

datetime_object = datetime.datetime.now() 

print(datetime_object) 

Output- 

2021-12-19 09:26:03.478039 

#Get Current Date 

import datetime 

date_object = datetime.date.today() 

print(date_object) 

Output- 

2021-12-19 



85  

 
 

Commonly used classes in the datetime module are: 
 

Class Usage 

datetime.date Class You can instantiate date objects from the date class. A date object represents 

a date (year, month and day). 

datetime.time Class A time object instantiated from the time class represents the local time. 

datetime.datetime Class The datetime module has a class named dateclass that can contain 

information from both date and time objects. 

datetime.timedelta Class A timedelta object represents the difference between two dates or times. 

 
 

 
If you are wondering, date() in the above example is a constructor of the date class. The constructor takes three 

arguments: year, month and day. 

The variable d1 is a date object. 

We can only import date class from the datetime module. Here's how: 
 

 

You can create a date object containing the current date by using a classmethod named today(). 

['MAXYEAR', 'MINYEAR', ' builtins ', '   cached__', '   doc   ', '   file   ', '   loader   ', '__name   ', 

' package ', ' spec__', '_divide_and_round', 'date', 'datetime', 'datetime_CAPI', 'time', 'timedelta', 'timezone', 

'tzinfo'] 

# Get current date 

from datetime import date 

today = date.today() 

print("Current date =", today) 

# Date object to represent a date 

import datetime 

d = datetime.date(2019, 4, 13) 

print(d) 

Output- 

2021-04-13 

# Date object to represent a date 

from datetime import date 

d1 = date(2021, 4, 13) 

print(d1) 



86  

Python format datetime 

The way date and time is represented may be different in different places, organizations etc. It's more common to 

use mm/dd/yyyy in the US, whereas dd/mm/yyyy is more common in the UK. 

Python has strftime() and strptime() methods to handle this. 

 
 

Python strftime() - datetime object to string 

The strftime() method is defined under classes date, datetime and time. The method creates a formatted string from 

a given date, datetime or time object. 

 

 

Here, %Y, %m, %d, %H etc. are format codes. The strftime() method takes one or more format codes and returns a 

formatted string based on it. 

In the above program, t, s1 and s2 are strings. 

%Y - year [0001,..., 2020, 2021,..., 9999] 

%m - month [01, 02, ..., 11, 12] 

%d - day [01, 02, ..., 30, 31] 

%H - hour [00, 01, ..., 22, 23 

#Format date using strftime() 

from datetime import datetime 

# current date and time 

now = datetime.now() 

t = now.strftime("%H:%M:%S") 

print("time:", t) 

s1 = now.strftime("%m/%d/%Y, %H:%M:%S") 

# mm/dd/YY H:M:S format 

print("s1:", s1) 

s2 = now.strftime("%d/%m/%Y, %H:%M:%S") 

# dd/mm/YY H:M:S format 

print("s2:", s2) 

Output- 

time: 04:34:52 

s1: 12/26/2021, 04:34:52 

s2: 26/12/2021, 04:34:52 



87  

%M - minute [00, 01, ..., 58, 59] 

%S - second [00, 01, ..., 58, 59] 

 
 

Python strptime() - string to datetime 

The strptime() method creates a datetime object from a given string (representing date and time). 
 

The strptime() method takes two arguments: 

• a string representing date and time 

• format code equivalent to the first argument 

By the way, %d, %B and %Y format codes are used for day, month(full name) and year respectively. 

 
 

Handling timezone in Python 

Suppose, you are working on a project and need to display date and time based on their timezone. Rather than trying 

to handle timezone yourself, we suggest you to use a third-party pytZ module. 

 

from datetime import datetime 

import pytz 

local = datetime.now() 

print("Local:", local.strftime("%m/%d/%Y, %H:%M:%S")) 

tz_NY = pytz.timezone('America/New_York') 

datetime_NY = datetime.now(tz_NY) 

print("NY:", datetime_NY.strftime("%m/%d/%Y, %H:%M:%S")) 

tz_London = pytz.timezone('Europe/London') 

datetime_London = datetime.now(tz_London) 

print("London:", datetime_London.strftime("%m/%d/%Y, %H:%M:%S")) 

Output- 

# Format date using strptime() 

from datetime import datetime 

date_string = "21 June, 2021" 

print("date_string =", date_string) 

date_object = datetime.strptime(date_string, "%d %B, %Y") 

print("date_object =", date_object) 

Output- 

date_string = 21 June, 2021 

date_object = 2021-06-21 00:00:00 



88  

 
Here, datetime_NY and datetime_London are datetime objects containing the current date and time of their 

respective timezone. 
 

 

Lab Assignments  

SET A 

1. Write a Python program to read an entire text file. 

2. Write a Python program to compute the number of characters, words and lines in a file. 

3. Write a Python script to print the current date in following format “Sun May 29 02:26:23 

IST 2017” 

SET B 

1. Write a Python program to append text to a file and display the text. 

2. Write a Python program to print each line of a file in reverse order. 

3. Write a Python program to print date, time for today and now. 

PROGRAMS FOR PRACTICE: 

1. Write a Python program to read an entire text file. 

2. Write a Python program to read first n lines of a file. 

3. Write a Python program to append text to a file and display the text. 

4. Write a Python program to read last n lines of a file. 

5. Write a Python program to read a file line by line and store it into a list. 

6. Write a Python program to read a file line by line store it into a variable. 

7. Write a Python program to read a file line by line store it into an array. 

8. Write a python program to find the longest words. 

9. Write a Python program to count the number of lines in a text file. 

10. Write a Python program to count the frequency of words in a file. 

11. Write a Python program to get the file size of a plain file. 

12. Write a Python program to write a list to a file. 

13. Write a Python program to copy the contents of a file to another file . 

14. Write a Python program to combine each line from first file with the corresponding line in second file. 

15. Write a Python program to remove newline characters from a file. 

Local time: 2018-12-20 13:10:44.260462 

America/New_York time: 2018-12-20 13:10:44.260462 

Europe/London time: 2018-12-20 13:10:44.260462 



89  

16. Write a Python program that takes a text file as input and returns the number of words of a given text file. 

Note: Some words can be separated by a comma with no space. 

17. Write a Python program to extract characters from various text files and puts them into a list. 

18. Write a python program to get Current Time 

19. Get Current Date and Time using Python 

20. Write a python | Find yesterday’s, today’s and tomorrow’s date 

21. Write a python program to convert time from 12 hour to 24 hour format 

22. Write a python program to find difference between current time and given time 

23. Write a python Program to Create a Lap Timer 

24. Convert date string to timestamp in Python 

25. Find number of times every day occurs in a Year 

 
 

Signature of the instructor Date 
 

 

Assignment Evaluation    

0:Not done 2:Late Complete 4:Complete 

1:Incomplete 3:Needs improvement 5:Well Done 

 

 

 

 

 

 

 

 

 

 

Assignment 5 : Exception Handling and Regular Expression 

Objectives  

• Understand Exceptions and Exception handling in python 

• How to apply and analyse exception handling in python programming 

• Understand Concept of regular expression, various types of regular expressions, use of match function. 



90  

Reading  

You should read the following topics before starting this exercise 

Concept of Exception, Handling Exceptions - Use of try....except...else keywords, Exception with Arguments, 

User-defined Exceptions. 

Concept of regular expression, various types of regular expressions, using match function. 

Ready Reference and Self Activity  

Exception: 

An exception is an event, which occurs during the execution of a program that disrupts the normal flow of 

the program's instructions. In general, when a Python script encounters a situation that it cannot cope with, it 

raises an exception. An exception is a Python object that represents an error. 

When a Python script raises an exception, it must either handle the exception immediately otherwise it 

terminates and quits. 

 
Handling an Exception 

If you have some suspicious code that may raise an exception, you can defend your program by placing the 

suspicious code in a try: block. After the try: block, include an except: statement, followed by a block of 

code which handles the problem as elegantly as possible. 

Syntax 

Here is simple syntax of try....except...else blocks − 

try: 

You do your operations here; 

except ExceptionI: 

If there is ExceptionI, then execute this block. 

except ExceptionII: 

If there is ExceptionII, then execute this block. 

else: 

If there is no exception then execute this block 

 
 

Here are few important points about the above-mentioned syntax − 

• A single try statement can have multiple except statements. This is useful when the try block contains 

statements that may throw different types of exceptions 

• You can also provide a generic except clause, which handles any exception. 

• After the except clause(s), you can include an else-clause. The code in the else-block executes if the 

code in the try: block does not raise an exception. 



91  

• The else-block is a good place for code that does not need the try: block's protection. 

This example opens a file, writes content in the, file and comes out gracefully because there is no problem at 

all 

 

 

This example tries to open a file where you do not have write permission, so it raises an exception. 
 

This kind of a try-except statement catches all the exceptions that occur. Using this kind of try-except 

try: 

fh = open("testfile", "w") 

fh.write("This is my test file for exception handling!!") 

except IOError: 

print "Error: can\'t find file or read data" 

else: 

print "Written content in the file successfully" 

fh.close() 

This produces the following result – 

Written content in the file successfully 

try: 

fh = open("testfile", "r") 

fh.write("This is my test file for exception handling!!") 

except IOError: 

print "Error: can\'t find file or read data" 

else: 

print "Written content in the file successfully" 

This produces the following result − 

Error: can't find file or read data 

The except Clause with No Exceptions 

You can also use the except statement with no exceptions defined as follows − 

try: 

You do your operations here; 

except: 

If there is any exception, then execute this block. 

else: 

If there is no exception then execute this block 



92  

statement is not considered a good programming practice though, because it catches all exceptions but does 

not make the programmer identify the root cause of the problem that may occur. 

The except Clause with Multiple Exceptions. 

You can also use the same except statement to handle multiple exceptions as follows- 

try: 

You do your operations here; 

except(Exception1[, Exception2[,...ExceptionN]]]): 

If there is any exception from the given exception list, 

then execute this block. 

else: 

If there is no exception then execute this block. 

 
 

The try-finally Clause 

You can use a finally: block along with a try: block. The finally block is a place to put any code that must 

execute, whether the try-block raised an exception or not. The syntax of the try-finally statement is this 

try: 

You do your operations here; 

Due to any exception, this may be skipped. 

finally: 

This would always be executed 

You cannot use else clause as well along with a finally clause. 
 

Same example can be written more cleanly as follows − 
 

try: 

fh = open("testfile", "w") 

fh.write("This is my test file for exception handling!!") 

finally: 

print "Error: can\'t find file or read data" 

 
 

If you do not have permission to open the file in writing mode, then this will produce the following result − 

Error: can't find file or read data 

try: 

fh = open("testfile", "w") 

try: 



93  

 
When an exception is thrown in the try block, the execution immediately passes to the finally block. After 

all the statements in the finally block are executed, the exception is raised again and is handled in the except 

statements if present in the next higher layer of the try-except statement. 

Raising an Exceptions 

You can raise exceptions in several ways by using the raise statement. The general syntax for the raise 

statement is as follows. 

Syntax 

raise [Exception [, args [, traceback]]] 

Here, Exception is the type of exception (for example, NameError) and argument is a value for the 

exception argument. 

The argument is optional; if not supplied, the exception argument is None. 

The final argument, traceback, is also optional (and rarely used in practice), and if present, is the traceback 

object used for the exception. 

An exception can be a string, a class or an object. Most of the exceptions that the Python core raises are 

classes, with an argument that is an instance of the class. Defining new exceptions is quite easy and can be 

done as follows – 

 
Note: In order to catch an exception, an "except" clause must refer to the same exception thrown either class 

object or simple string. For example, to capture above exception, we must write the except clause as follows 

try: 

Business Logic here... 

except "Invalid level!": 

Exception handling here... 

fh.write("This is my test file for exception handling!!") 

finally: 

print "Going to close the file" 

fh.close() 

except IOError: 

print "Error: can\'t find file or read data" 

def functionName( level ): 

if level < 1: 

raise "Invalid level!", level 

# The code below to this would not be executed 

# if we raise the exception 



94  

else: 

Rest of the code here... 

User-Defined Exceptions 

Python also allows you to create your own exceptions by deriving classes from the standard built-in 

exceptions. 

Here is an example related to RuntimeError. Here, a class is created that is subclassed from RuntimeError. 

This is useful when you need to display more specific information when an exception is caught. 

In the try block, the user-defined exception is raised and caught in the except block. The variable e is used to 

create an instance of the class Networkerror. 

class Networkerror(RuntimeError): 

def  init (self, arg): 

self.args = arg 

So once you defined above class, you can raise the exception as follows − 

try: 

raise Networkerror("Bad hostname") 

except Networkerror,e: 

print e.args 

 
 

Python - Regular Expressions 

A regular expression is a special sequence of characters that helps you match or find other strings or sets of 

strings, using a specialized syntax held in a pattern. Regular expressions are widely used in UNIX world. 

The Python module re provides full support for Perl-like regular expressions in Python. The re module 

raises the exception re.error if an error occurs while compiling or using a regular expression. 

The match Function 

This function attempts to match RE pattern to string with optional flags. 

Here is the syntax for this function − 

re.match(pattern, string, flags=0) 
 

Parameter Description 

pattern This is the regular expression to be matched. 

string This is the string, which would be searched to match the pattern at the beginning of string. 

flags You can specify different flags using bitwise OR (|). These are modifiers, which are listed in 

the table below. 

The re.match function returns a match object on success, None on failure. We usegroup(num) or 



95  

groups() function of match object to get matched expression. 
 

The search Function 

This function searches for first occurrence of RE pattern within string with optional flags. 

Here is the syntax for this function − 

re.search(pattern, string, flags=0) 

Here is the description of the parameters − 

Parameter Description 

Pattern This is the regular expression to be matched. 

String This is the string, which would be searched to match the pattern anywhere in the string. 

Flags You can specify different flags using bitwise OR (|). These are modifiers, which are listed in the 

table below. 

The re.search function returns a match object on success, none on failure. We use group(num) or groups() 

function of match object to get matched expression. 

 

import re 

line = "Cats are smarter than dogs"; 

searchObj = re.search( r'(.*) are (.*?) .*', line, re.M|re.I) 

if searchObj: 

print "searchObj.group() : ", searchObj.group() 

print "searchObj.group(1) : ", searchObj.group(1) 

print "searchObj.group(2) : ", searchObj.group(2) 

import re 

line = "Cats are smarter than dogs" 

matchObj = re.match( r'(.*) are (.*?) .*', line, re.M|re.I) 

if matchObj: 

print "matchObj.group() : ", matchObj.group() 

print "matchObj.group(1) : ", matchObj.group(1) 

print "matchObj.group(2) : ", matchObj.group(2) 

else: 

print "No match!!" 

Output- 

matchObj.group() : Cats are smarter than dogs 

matchObj.group(1) : Cats 

matchObj.group(2) : smarter 



96  

 

 

Lab Assignments  

SET A 

1. Write a Python program to demonstrate the zero division error and overflow error. 

2. Write a Python program to find sequences of lowercase letters joined with a underscore 

3. Write a python program to Check if String Contain Only Defined Characters using Regex 

SET B 

1. Write a Python program to match a string that contains only upper and lowercase letters, 

numbers, and underscores.Write a Python program to raised the attribute error, if attribute 

class object has no attribute with the name attribute. 

2. Write a python Program to Remove duplicate words from Sentence 

3. Write a python to| Remove all characters except letters and numbers 

 
 

PROGRAMS FOR PRACTICE: 

1. Write a python program to Count Uppercase, Lowercase, special character and numeric values using Regex 

2. Write a python program to find the most occurring number in a string using Regex 

3. Write a python Regex to extract maximum numeric value from a string 

4. Write a python program to put spaces between words starting with capital letters using Regex 

5. Write a python to Check whether a string starts and ends with the same character or not 

6. Write a python regex to find sequences of one upper case letter followed by lower case letters 

7. Write a python Regex program to accept string ending with alphanumeric character 

8. Write a python Regex program to accept string starting with vowel 

9. Write a python Program to check if a string starts with a substring using regex 

10. Write a python Program to Check if an URL is valid or not using Regular Expression 

11. Write a python Program to Parsing and Processing URL using Python – Regex 

12. Write a python Program to validate an IP address using ReGex 

else: 

print "Nothing found!!" 

 
 

When the above code is executed, it produces following result − 

searchObj.group() : Cats are smarter than dogs 

searchObj.group(1) : Cats 

searchObj.group(2) : smarter 



97  

13. Write a python Program to Check if email address valid or not 

14. Write a python program to find files having a particular extension using RegEx 

15. Write a python program to extract IP address from file 

16. Write a python program to check the validity of a Password 

Students can practice Common Examples of Exception as: 

1. Division by Zero 

2. Accessing a file which does not exist. 

3. Addition of two incompatible types 

4. Trying to access a nonexistent index of a sequence 

5. Removing the table from the disconnected database server. 

6. ATM withdrawal of more than the available amount 

 

 

 
Signature of the instructor Date 

 

 

Assignment Evaluation    

0:Not done 2:Late Complete 4:Complete 

1:Incomplete 3:Needs improvement 5:Well Done 


